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1 Introduction

In this section, I will first provide one of many formulations of the problem we wish to solve. Afterwards,
I will attempt to motivate the reader by first viewing some applications of sampling, then by alluring the
reader using the mathematical beauty of sampling and its connections to gradient flows and optimization.

1.1 The Problem

Suppose we have a function f : Rp → R, the sampling problem is to output samples X ∼ π, where
π(x) = (1/Z) exp(−f(x)), where Z :=

∫
Rp exp(−f(x)) dx is the normalization constant. In most cases,

the normalization constant is computationally intractable, and so we would only have access to π up to
proportionality. With the development of computational tools such as AutoGrad [Maclaurin et al., 2015],
we are also able to compute the gradient of f and hence the gradient of π via backpropagation.

This, however, is not sufficient for directly sampling form π. Instead, we settle for an algorithm that can
produce an approximate (in some sense) sample from π. Given some target accuracy, we wish to minimize
the computational resources required to produce an approximate sample satisfying the accuracy requirement.
Additionally, p may be extremely large. The main goal for the last 10 years has been to provide samplers
that scale well with increasing dimensionality - circumventing the curse of dimensionality for sampling.

Now, given a convex function f : Rp → R, the theory of finding x ∈ argminRp f is extremely mature and
developed [Fawzi, 2024]. Upper and lower bounds for the speed of convergence of various convex optimization
algorithms have been analyzed. This is not the case for sampling. Algorithms for sampling from π ∝ exp(−f)
are almost always more expensive than algorithms for minimizing f – in fact, most samplers assume that
you will initialize your sampler at a minimizer of f , since the computational cost of finding a minima will
be dwarfed by that of sampling.

1.2 Why?

One may ask the purpose of posing such a problem. For the computational mathematician, many problems
can be solved approximately. For Bayesians, posterior inference is a key step to realizing the models for real-
world use cases. Finally, for those only interested in theory, there are deep connections between sampling
and convex optimizations, realized through fascinating theories such as optimal transport and differential
equations.

A simple and reductive case is estimating the area of the unit circle in R2. If we somehow forgot the formula
for computing this, we can always sample random variables uniform on [−1,+1]2, and compute the ratio of
samples that lie within the unit circle - this is known as the Monte Carlo method. Of course, the problem is
producing uniform random numbers is highly non-trivial, and this task is delegated to the cryptographers.

A slightly more complex example would be in computing functionals of the target distribution π. Given
our framework above, if we only had access to the function f and wanted to compute EX∼π[X], a simple
estimator would be to generate n samples X1, . . . , Xn and compute X̄ := n−1

∑n
i=1Xi. We are also allowed

to approximate more complex functionals.

An even more complex example would be in generative modelling [Song and Ermon, 2019, Ho et al., 2020,
Alamdari et al., 2023]. In this machine learning problem, we are given access to a dataset D = {Xi}ni=1 ∼ π.
Our task is to produce a function based on the data fD(·) such that fD(z) ∼ π, where z ∼ N (0, Ip) and p
is the dimensionality of the data. The popularity of generative models have skyrocketed with commercial
applications such as Stable Diffusion Rombach et al. [2021] and DALL-E Ramesh et al. [2022].
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Finally, the most common use case of sampling algorithms comes from Bayesian inference. In a general
statistical modelling problem, we would first specify a statistical model, parametrized by θ ∈ Rp (note that
sampling is also possible in the non-parametric case [Hjort et al., 2010]). Then, the Bayesian approach is
to specify a prior density function over these parameters, pθ(·), such as a Gaussian or Laplacian. We also
specify a likelihood function ℓ(θ;D) = pD|θ. Then, after observing the data D = {Xi}ni=1, we can compute,
using Bayes’ rule, the posterior distribution

pθ|D =
pD|θpθ

pD
.

Even for ‘simple’ statistical models such as Bayesian logistic regression, the posterior is often intractable.
The problem is only exacerbated in high dimensions, typically when p ≫ n. Hence, the need for sampling
algorithms that can explore the space of the data well is crucial for the purposes of Bayesian inference. Of
course, for predictive statistics, the predictive distribution also relies on having a good approximation of the
posterior.

Other techniques such as variational inference attempts to directly fit a tractable distribution as an ap-
proximation to the posterior [Blei et al., 2017]. In certain problems where knowing the entire distribution
is required, variational inference can be better. However, variational inference generally produce samples
that have lower fidelity, accompanied with some other issues. While the general consensus is that MCMC
methods run slower but produce higher fidelity samples compared to variational inference, developments in
computer hardware (GPUs) have enabled massive parallelization of Markov chains.

For most applicable problems, algorithms such as Markov Chain Monte Carlo or Gibbs sampling would be
more accurate and even faster [Bishop and Bishop, 2024].

1.3 Outline of Contributions

The main contributions of this paper are to refine and present, in greater detail, the proofs of several recent
and/or classical papers that contribute to the theory of sampling, primarily focusing on Langevin-based
sampling algorithms. The aim is to provide a clear and accessible introduction to the topic, targeted at early
master’s level students wising to gain an understanding of the theoretical underpinnings of modern sampling
methods.

It should also be noted that the proofs of a select few propositions and lemmas (e.g. Example problems in
Chewi [2024]) may have a slightly different approach than in literature (as far as we are concerned). However,
the primary focus is still on clarifying and adding details for proofs appearing in literature.

2 Background

This section consists of theory which will be used throughout the rest of this text.

2.1 Notation

Let Ip ∈ Rp×p denote the identity matrix and ⟨·, ·⟩ denote the Euclidean inner product unless otherwise
specified. Let Cn(Rp;R) = Cn(Rp) be the set of functions f : Rp → R that are n-times continuously
differentiable. Smoothness refers to continuously differentiable with Lipschitz gradient. Let Cn

c (Rp) be the
functions in Cn(Rp) with compact support. Let Lp(π) to be (up to Lp(π) indistinguishability) the space
of functions whose p-th power is π-integrable. Let Lp(Rn) for some n ∈ N denote the (classical) Lp-space
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with respect to the Lebesgue measure on Rn. Denote B(Rp) the Borel-σ-algebra of Rp. We overload σ(·) to
denote the diffusion coefficient when the argument is a random variable, and to denote the generated sigma-
algebra when the argument is a collection of sets. For two random variables X,Y , we denote independence
by X ⊥ Y . For two probability measures P,Q, we denote equivalence (mutually absolutely continuous) by
P ∼ Q, note that ∼ is overloaded with ‘is distributed as’.

Denote P(Rp) to be the set of probability measures over Rp, P2(Rp) the set of probability measures over
Rp with finite second moment (i.e. µ s.t. EX∼µ[∥X∥22] < ∞), and P2,ac(Rp) those probability measures in
P2(Rp) that are absolutely continuous with respect to the Lebesgue measure. For simplicity, we assume that
the processes that are solutions to Itô diffusions admit a density with respect to the Lebesgue measure for
t = 0 (implying the existence of densities for t > 0 by applying the Markov semigroup, as will be shown later).
Furthermore, if X ∼ π and π admits density p, we may also write X ∼ p instead. When integrating against
a probability measure π that admits a density with respect to the Lebesgue measure, we may overload π to
denote both the density and measure, i.e.

∫
µ =

∫
µ(dx) =

∫
µ(x) dx. If the argument of π is a measurable

subset B ∈ B(Rp) then π denotes the measure, else if the argument if π is an element x ∈ Rp then π denotes
the density.

2.2 Basic Markov Semi-group Theory

Before beginning, when referring to some SDE – unless otherwise specified – solutions are assumed to be
(1) strong and (2) pathwise unique. That is, for the Itô diffusion dXt = b(Xt) dt + σ(Xt) dWt started
at x0 ∈ Rp, the solution process (Xt)t≥0 is (1) adapted to σ(Wt : t ≥ 0) and (2) fixing the ambient space

(Ω,F , (Ft)t≥0,P) and Brownian motion (Wt)t≥0, for any two solutions (Xt)t≥0, (X̃t)t≥0 started at x0, we

must have P(X̃t = Xt ∀t ≥ 0) = 1. Hence, we will take the ambient filtration to be the filtration generated
by the Brownian motion: Ft = σ(Ws : s ≤ t).

One can verify that all of the Itô diffusions indeed have Lipschitz diffusion and drift coefficients, usually
due to a C1 assumption on the drift and constant diffusivity. Hence, by Theorem 7.2 of Miller and Silvestri
[2024], the SDE admit – for each starting point x ∈ Rp – a pathwise unique strong solution.

Two important things to remark in our setting:

1. By considering only strong and pathwise unique solutions to SDEs, we know that these solutions have
the strong Markov property. That is, for all bounded and Borel-measurable f on Rp and τ a.s.-finite
stopping times and for all s ≥ 0, we have

Ex[f(Xτ+s) | Fτ ] = EXτ [f(Xs)],

where Ex[f(Xt)] := E[f(Xt) | X0 = x] [Oksendal, 1992].

2. By only considering Itô diffusions drift and diffusion coefficients that do not depend directly on time,
solutions to our SDE will be time-homogeneous (or simply homogeneous). That is, for all s, t ≥ 0,
x ∈ Rp, and all B ∈ B(Rp), we have

P(Xs+t ∈ B | Xs = x) = P(Xt ∈ B | X0 = x).

Now that we know solutions to Itô diffusions are homogeneous strong Markov processes, we can start estab-
lishing some theory for Markov processes. Suppose we are given a homogeneous strongly Markovian process
(Xt)t≥0. There are a few properties that we are interested in. We first define the Markov semigroup
associated with X.
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Definition 1 (Markov Semigroups). Given a homogeneous Markov process (Xt)t≥0, its associated Markov
semigroup (or transition kernel) is the collection of operators (P t)t≥0 that acts to the right on bounded
Borel-measurable functions f via

(P tf)(·) = E[f(Xt) | X0 = ·].

Notably, if f = 1B for B ∈ B(Rp), we recover the notion of transition kernels (as seen in the theory of
Markov chains):

P t(x,B) := (P t
1B)(x) = P(Xt ∈ B | X0 = x)

Furthermore, given a probability measure with density µ with respect to the Lebesgue measure, the operator
acts to the left on µ via

(µP t)(·) =
∫
Rp

µ(x)P t(x, ·) dx.

The reason why its called the Markov semigroup is because

1. P 0 = id, where id is the identity operator.

2. P t(P sP r) = (P tP s)P r for all r, s, t ≥ 0.

3. P tP s = P sP t = P s+t for all s, t ≥ 0.

The first property is easily verified by definition as P 0f(x) = Ex[f(X0)] = f(x). The second and third
properties also directly follow from the definition of time-homogeneity, the strong Markov property, and the
tower property Chewi [2024][Lemma 1.2.2].

Now, we very briefly touch on the infinitesimal generators of a Markov semigroup. The infinitesimal
generator (or generator) associated with a Markov semigroup and hence an Itô diffusion is a second order
partial differential operator acting on certain functions (specified in a moment).

Definition 2. Let (P t)t≥0 be a Markov semigroup. Then the infinitesimal generator, or generator, associated
with (P t)t≥0 acting on f is defined as

(Af)(·) := lim
t↘0

(P tf)(·)− f(·)
t

whenever the limit is well-defined.

From Oksendal [1992][Theorem 7.3.3], we explicitly have the form of the generator and what functions it
can act on.

Fact 3. Let (Xt)t≥0 be the solution to the Itô diffusion dXt = b(Xt) dt + σ(Xt) dWt. If f ∈ C2(Rp;R) and
has compact support, then the limit in Definition 2 exists for f and we have

(Af)(x) =

p∑
i=1

bi(x)
∂f

∂xi
+

p∑
i,j=1

(
σσ⊤

2
)ij(x)

∂2f

∂xi∂xj
= ⟨b(x),∇f(x)⟩+Tr

(
(∇2f(x))

σ(x)σ⊤(x)

2

)
. (1)

Furthermore, we can directly compute the adjoint of A to get

(A∗f)(x) = −
p∑

i=1

∂(bif)

∂xi
(x) +

p∑
i,j=1

∂2(σ(x)σ
⊤(x)

2 f)

∂xi∂xj
(x). (2)
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Since A is the infinitesimal operator corresponding to the Itô diffusion defined by b, σ, we say that a second-
order differential operator of this form is called an A-diffusion, or (b, σ)-diffusion, operator. The operator A
and its adjoint A∗ are central to the study of both PDEs and SDEs – due to Kolmogorov’s backward equation
and the forward equation (also known as the Fokker-Planck equation when the SDE is an Itô diffusion). We
will state the Fokker-Planck equation.

Fact 4. For a (b, σ)-Itô diffusion, suppose Xt ∼ πt with density pt(·) for all t ≥ 0, then

∂tpt = A∗pt,

where A∗ is as Equation (2).

Note that it is enough to specify only the initial distribution X0 ∼ π0, and then use the adjoints of the
Markov semigroup (P t)∗ to evolve the distribution of X0 towards Xt. More information can be found in
Oksendal [1992][8.1-8.3].

Before ending the section, we will also briefly talk about the stationary measure for Markov processes, and
how they relate to the generators defined above. A stationary measure (or invariant measure) of a
Markov process is a probability measure π such that if X0 ∼ π, then Xt ∼ π for all t ≥ 0. Using the
Fokker-Planck equation, we state some important equivalent conditions for stationarity.

Proposition 5. Given a Markov process (Xt)t≥0 with generator A and probability density π over the state
space, the following are equivalent:

1. If X0 ∼ π, then for all t ≥ 0, we have Xt ∼ π.

2. A∗π = 0.

3. For all g ∈ L2(π), we have Eπ[Ag] = 0.

Proof. For (1. ⇒ 2.), note that stationarity is equivalent to ∂tpt = 0 and we are done after viewing Fokker-
Planck. This also gives (2. ⇒ 1.). For (2. ⇔ 1.), we note that (A∗π = 0) ⇔ (⟨g,A∗π⟩L2(π) = 0 for all
g ∈ L2(π)) ⇔ (⟨Ag, π⟩L2(π) = Eπ[Ag] = 0 for all g ∈ L2(π)) by the definition of the adjoint. ■

To finish off the section, we perform a computation that gives us the stationary distributions of the over-
damped Langevin diffusion and underdamped Langevin diffusion.

Proposition 6. 1. The stationary measure of the Langevin diffusion in Equation (4) is π(x) := e−f(x)/Z,
where Z :=

∫
Rp e

−f(x) dx is the normalization constant.

2. The stationary measure of the underdamped Langevin diffusion in Equation (8) is π(x, v) := e−f(x)−v2/(2γ)/Z ′,

where Z ′ :=
∫
Rp×Rp e

−f(x)−∥v∥2
2/(2γ) dx dv is the normalization constant. Moreover, the marginalization

to x is π(x) ∝ e−f(x)

Proof of 1. For test functions ϕ, ψ (in this case, C2 and vanishing at infinities), we have

⟨Aϕ,ψ⟩ =
∫
(Aϕ)ψ =

∫
(∆ϕ− ⟨∇f,∇ϕ⟩)ψ =

∫
(∆ϕ)ψ −

∫
⟨∇f,∇ϕ⟩ψ.

Now, we use integration by parts twice and once on the first and second terms of the right-hand side,
respectively, while using the vanishing at infinity property of test functions to get

⟨Aϕ,ψ⟩ =
∫
ϕ(∆ψ +∇ · (ψ∇f)︸ ︷︷ ︸

=A∗

) =

∫
ϕ(∇ · (ψ(∇ logψ +∇f)))
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We could also directly plug in the coefficients of Equation (4) to Fact 3 and get the same result. Regardless,
we use condition 2 of Proposition 5 and solve for π in

0 = ∇ · (π(∇ log π +∇f))

to get π = exp(−f + C) for constant C that can be chosen to absorb the normalization constant. ■

Proof of 2. Let π(x, v) denote the joint density of the stationary distribution.

From Fact 4, we know that the stationary distribution π must satisfy:

A∗π = 0,

where A∗ is the adjoint of the generator of the diffusion process.

Using Equation (2) with drift coefficient b(x, v) = (v,−∇f(x)− γv) and constant diffusion coefficient

σ(x, v) =

[
0 0
0

√
2γIp

]
∈ R2p×2p,

we must have

A∗π = −
p∑

i=1

∂(πvi)

∂xi
+

p∑
i=1

∂(π( ∂f
∂xi

+ γvi))

∂vi
+ γ

p∑
i=1

∂2π

∂v2i
= 0

in order to satisfy the stationarity condition. Now, we ansatz π(x, v) = πX(x)πV (v) = C exp(−f(x) −
∥v∥22/(2γ)). Plugging this in, we can verify that the stationarity condition indeed holds. Now choose C to
normalize our density. ■

2.3 Basic Optimal Transport Theory

Here, we introduce the basics of optimal transport theory for probability measures over Euclidean space. In
fact, we will only need the definition of the Wasserstein metric. We first define a coupling between two
measures over Rp.

Definition 7. Given µ, ν ∈ P(Rp), the set of couplings between µ and ν is defined as

Π(µ, ν) := {γ ∈ P(Rp × Rp) | γ(B × Rp) = µ(B), γ(Rp ×B) = ν(B) ∀B ∈ B(Rp)},

that is, the set of measures on Rp × Rp such that the first marginal agrees with µ and the second marginal
agrees with ν.

Now, for some cost function c : Rp × Rp → [0,∞), the c-optimal transport cost between µ and ν is
infγ∈Π(µ,ν) E(X,Y )∼γ [c(X,Y )]. However, for our purposes, we are only concerned with the case when c(x, y) =
∥x− y∥22. This is because – as will be seen in the next section – the optimal transport cost paired with the
space of distributions with finite second moment forms a nice space with ‘good-enough’ geometry that we
can start solving an ODE on it.

Definition 8. For µ, ν ∈ P(Rp), the 2-Wasserstein metric between µ and ν is

W2(µ, ν) := inf
γ∈Π(µ,ν)

(
E(X,Y )∼γ∥X − Y ∥22

) 1
2 .
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Now, we need to show that there actually exists a coupling such that the infimum in the above definition
is attained. Recall that if a function f : T → R̄, where T is any topological space, is lower semicontinuous
and K ⊆ T compact, then infx∈K f(x) exists and is attained by some x ∈ K. We refer the reader to Villani
et al. [2009][Theorem 4.1, Lemma 4.3, Lemma 4.4] or Thorpe [2019][Proposition 1.5] for the full proof. This
is to avoid having to talk about weak-* topologies.

Fact 9. W2(µ, ν) always exists for all µ, ν ∈ P(Rp) and is attained by some γ ∈ Π(µ, ν).

There is one more thing to say, which is that the original formulation of optimal transport, known as Monge’s
problem, had a tighter restriction (our relaxed notion of optimal transport is called the Kantorovich problem
or the Kantorovich relaxation). Instead of optimizing over all couplings, we instead need to optimize over
all transport plans T : Rp → Rp such that (X,T (X)) ∼ µ ⊗ ν. The celebrated Brenier’s theorem, in part,
provides conditions on when Monge’s problem coincides with the Kantorovich problem. This is also what
motivates us to switch from using P2(Rp) to P2,ac(Rp) in the next section.

Theorem 10 (Brenier [1991]). Suppose µ, ν ∈ P2,ac(Rp), then the optimal transport plans Tµ,ν Tν,µ, satis-
fying the transport from µ to ν and ν to µ, respectively, exists and is unique.

Before ending the section, it should be noted that this is not even scratching the surface of optimal transport
theory: basic notions such as the duality formula are fundamental but will not be covered.

2.4 Langevin Diffusion in P2,ac(Rp): The JKO Scheme

In this section, we develop the JKO scheme for the Langevin diffusion [Jordan et al., 1998]. The JKO scheme
allows us to easily couple the analysis between the discrete time Langevin Monte Carlo with the continuous
time Langevin diffusion. Instead of analyzing the random dynamic (Xt) over Rp for minimizing f , we can
analyze the deterministic gradient flow of law(Xt) over (P2,ac(Rp),W2) for minimizing DKL(·∥e−f/Z).

We first show that the Wasserstein space is a metric space. In order to do so, we require a technical lemma
from Villani et al. [2009], itself requiring another theorem (disintegration of measures or simply disintegration
theorem). We will simply state it.

Fact 11 (Gluing Lemma). If γ1, γ2 ∈ P(Rp ×Rp) are such that γ1 has the same marginal distribution in its
second argument as γ2 in its first argument, then there exists γ ∈ P(Rp × Rp × Rp) such that the first two
marginals of γ is γ1 and the last two marginals of γ is γ2.

Proposition 12. The space (P2,ac(Rp),W2) is a metric space.

Proof. Symmetry is simple, and non-negativity follows directly from the non-negativity of the 2-norm. To
show W2(µ, ν) = 0 ⇐⇒ µ = ν, first note that if µ = ν, then choosing γ(x, y) = δx(y)µ(x) upper bounds
W 2

2 (µ, ν) by 0. On the other hand, if W 2
2 (µ, ν) = 0, then we must have X = Y γ-a.e., where γ is the optimal

coupling. So for all test functions f : Rp → R, we have∫
Rp

f dµ =

∫
Rp×Rp

f(x) dγ(x, y) =

∫
Rp×Rp

f(y) dγ(x, y) =

∫
Rp

f dν,

and so µ = ν.

For the triangle inequality, we make use of the gluing lemma. First let µ1, µ2, µ3 ∈ P2(Rp) and suppose
γ1 ∈ Π(µ1, µ2), γ2 ∈ Π(µ2, µ3) be the optimal couplings. Now, by the gluing lemma, we can find γ ∈
P(Rp × Rp × Rp) such that T 1

#γ = γ1 and T 2
#γ = γ2, where T

1 : (x, y, z) 7→ (x, y), T 2 : (x, y, z) 7→ (y, z)
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are projection mappings from (Rp)3 to (Rp)2. Also define T : (x, y, z) 7→ (x, z) and π := T#γ. Now, for
B ∈ B(Rp), we have

π(B × Rp) = T#γ(B × Rp) = γ{(x, y, z) ∈ (Rp)3 | T (x, y, z) ∈ B × Rp}
= γ{(x, y, z) ∈ (Rp)3 | x ∈ B} = γ(B × Rp × Rp) = µ1(B)

, which also gives π(Rp × B) = µ3(B). Hence π ∈ Π(µ1, µ3). Now, we can easily use π as an upper bound
on the infimum part of W2(µ1, µ3) as well as the triangle inequality (followed by Jensen’s) of ∥ · ∥2:

W2(µ1, µ3) ≤
(∫

Rp×Rp

∥x− z∥22 dπ(x, z)
) 1

2

=

(∫
(Rp)3

∥x− z∥22 dγ(x, y, z)

) 1
2

≤
(∫

Rp×Rp

∥x− y∥22 dγ1(x, y)
) 1

2

+

(∫
Rp×Rp

∥y − z∥22 dγ2(y, z)
) 1

2

=W2(µ1, µ2) +W2(µ2, µ3).

■

Not only do we have a metric space here, it is also complete and separable. The 2-Wasserstein distance
also simultaneously metrizes weak convergence and L2-convergence. That is, for (µk)k∈N ⊆ P2,ac(Rp), µ ∈
P2,ac(Rp), W2(µk, µ)

k→∞→ 0 if and only if
∫
Rp ∥ · ∥22 dµk

k→∞→
∫
Rp ∥ · ∥22 dµ and µk

weak→ µ [Thorpe, 2019][The-
orem 5.8].

Remark. Unfortunately, we must wave our hands vigorously throughout the rest of the section to rid the
background regarding the theory of Riemmanian and smooth manifolds. For great coverage of this theory,
please refer to Dafermos [2012]. For a rigorous coverage on the geometry of Wasserstein space, please refer
to Ambrosio et al. [2005]. I apologize profusely, let us proceed.

Furthermore, we can do basic geometry in Wasserstein space such as talk about gradient flows by defining
a Riemannian metric: at every ‘point’ µ ∈ P2,ac(Rp) we can define a tangent space TµP2,ac(Rp), itself
equipped with an inner product ⟨·, ·⟩µ such that it is ‘smooth when varying µ’. The Riemannian metric
then induces a metric on the original space which surprisingly matches the 2-Wasserstein distance. The
implication and takeaway should be that, for a ‘smooth’ curve in Wasserstein space, i.e. t 7→ µt ∈ P2,ac(Rp),
at each time t we can define a ‘tangent vector’ vt ∈ Tµt

P2,ac(Rp).

So, given a functional F : P2,ac(Rp) → [0,∞] that we wish to minimize, a good start is to compute the
‘gradient’ of F at some point µ, denoted ∇W2F (µ). It is an element of the tangent space at µ, TµP2,ac(Rp)
such that for every curve t 7→ µt with µ0 = µ, the following is satisfied:

∂tF (µt)|t=0 = ⟨∇W2F (µ), v0⟩µ,

where v0 is the tangent vector to the curve at time 0. This leads us to define the first variation of a
functional at some point.

Definition 13. Given a functional F : P2,ac(Rp) → [0,∞] and some point µ ∈ P2,ac(Rp), the first variation
of F at µ is the function δF (µ) : Rp → R , up to an additive constant, such that

∂tF (µt)|t=0 =

∫
Rp

δF (µ)(x) d(∂tµt|t=0)(x)

for all smooth curves (µt) started at µ.
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Before we state the main theorem of the section, we need one more result from Chewi [2024][Theorem 1.3.17].

Fact 14. Let t 7→ vt be a family of vector fields (vt : Rp → Rp)t≥0. Suppose a random process satisfies
the ‘SDE’ dXt = vt(Xt) dt. Let µt be the probability density of Xt at each time t. Then µt follows the
continuity equation, written as

∂tµt +∇ · (µtvt) = 0

Finally, this allows us to characterize the Wasserstein gradient of a functional at µ.

Lemma 15. For a functional F : P2,ac(Rp) → [0,∞] and a point µ ∈ P2,ac(Rp), we have

∇W2F (µ) = ∇(δF (µ)).

Proof. Let t 7→ µt be a smooth curve of measures in P2,ac(Rp) started at µ. If vt ∈ Tµt
P2,ac(Rp) and the

continuity equation holds, then vt is the tangent vector to the curve t 7→ µt at time t. Therefore,

∂tF (µt)|t=0 =

∫
Rp

δF (µ)(x) d(∂tµt|t=0)(x)

= −
∫
Rp

δF (µ)(x)∇ · ((v0µ)(x)) =
∫
Rp

⟨∇δF (µ)(x), v0(x)⟩ dµ(x).

Now, we need to show ∇δF (µ) ∈ TµP2,ac(Rp). Although it was not defined in the hand-waving section, to
complete the proof it suffices to know that

TµP2,ac(Rp) = closeL2(µ){∇ϕ | ϕ ∈ C∞
c (Rp)},

where closeL2(µ) is the closure of the set with respect to µ and the squared norm
∫
(·)2 dµ, recall the con-

struction of the classical Lebesgue space L2(dx). So by definition we arrive at the result. ■

Finally, we have a notion of the Wasserstein gradient flow for a functional F . By intuition, it should be
the smooth curve of measures t 7→ µt such that at each time t, its tangent vector is vt = −∇W2

F (µt). We
get a PDE over Rp by using to continuity equation in Fact 14 then substituting in Lemma 15:

∂tµt = ∇ · (µt∇δF (µt)). (3)

Here is the most beautiful part, where we see that the Fokker-Planck equation for Langevin diffusions matches
the continuity equation for the Wasserstein gradient flow of the KL divergence against the stationary measure
π = e−f .

Corollary 16. Consider a Langevin diffusion with potential f : Rp → R and the functional F (·) = DKL(·∥π),
where π ∝ exp(−f). The law of the Langevin diffusion t 7→ µt is the Wasserstein gradient flow of DKL(·∥π).

Proof. Notice that

F (·) =
∫
µ log

µ

π
=

∫
µ logµ−

∫
µ log(exp(−f)) =

∫
f dµ+

∫
logµdµ.

Now, we wish to compute the first variation at some measure µ ∈ P2,ac(Rp). Let t 7→ µt be a sufficiently
smooth curve, we have

∂tF (µt)|t=0 = ∂t

(∫
f(x)µt(dx) +

∫
log(µt(x))µt(dx)

)∣∣∣∣
t=0

=

∫
f(∂tµt|t=0) +

∫
(∂tµt)|t=0 logµ+

∫
µt

(
1

µt
(∂tµt|t=0)

)
︸ ︷︷ ︸

=0

=

∫
(f(x) + log µ(x))(∂tµt|t=0)(dx).
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Remark. Note that this calculation also shows why first variations are defined up to an additive constant
as the rightmost term on the right-hand side goes to 0. We could technically multiply it by any constant and
absorb it into the integral.

So we have computed that δF (µ) = f + log µ, therefore we have

∇W2F (µ) = ∇δF (µ) = ∇f +∇ logµ

= ∇(− log π) +∇ logµ = ∇ log
µ

π

by our characterization of the Wasserstein gradient in Lemma 15. Plugging into the continuity equation
shows that the Wasserstein gradient flow of DKL(·∥π) satisfies

∂tµt = ∇ · (µt∇ log
µt

π
) = A∗µt,

where A∗ is the adjoint of the Langevin diffusion operator. ■

This is a beautiful result that requires its own dedicated analysis. Here, however, we hope to have provided
a small peek into what Jordan et al. [1998] have kick-started. Before we end off, we need one more lemma,
to be used later, that transfers the α-strong convexity of the potential function to the α-strong convexity of
DKL(·∥π) in a geodesic sense.

Fact 17 (Chewi [2024] Definition 1.3.25, Theorem 1.4.4, Theorem 1.4.5). If π ∝ exp(−f) is α-strongly
log-concave, then for all µ, ν ∈ P2,ac(Rp), we have that

DKL(ν∥π) ≥ DKL(µ∥π) + ⟨∇W2
F (µ), Tµ,ν − id⟩µ +

α

2
W 2

2 (µ, ν),

where F (·) = DKL(·∥π), ⟨·, ·⟩µ is the Riemannian metric for (P2,ac(Rp),W2) at µ, and Tµ,ν is the optimal
transport plan from µ to ν.

3 Langevin-type Sampling

Now, we begin our analysis of a small subset of sampling algorithms: Langevin-type samplers.

3.1 Langevin Monte Carlo

The principal Langevin-type sampling algorithm is Langevin Monte Carlo (LMC): an Euler discretization
of the Langevin diffusion:

dθt = −∇f(θt) dt+
√
2 dWt, (4)

where f ∈ C1(Rp;R) is the ‘potential’ function, and W : [0,∞) × Ω → Rp is the standard p-dimensional
Brownian motion. That is, for an initial value ϑ0 ∈ Rp and ‘step size’ h > 0, LMC has updates given by

ϑh(k+1) := ϑhk − h∇f(ϑhk) +
√
2ξhk (5)

for each k ∈ N, where (ξhk)k≥0
i.i.d.∼ N (0, hIp).

Note that the law of the iterates match the law of the solution of the following SDE at times kh ∀k:

dϑt = bt(ϑ) dt+
√
2 dWt, (6)
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where b·(·) : (θ, t) 7→ −
∑∞

k=0 ∇f(θkh)1[kh,(k+1)h(t). Also notice that both SDEs are driven by the same
Brownian motion. From here on out, we take (θxt )t≥0 and (ϑxt )t≥0 to be the (pathwise unique, strong)
solutions to Equation (4) and Equation (6) started at x ∈ Rp, respectively (refer to first paragraph of
Section 2.2 for why).

We analyze the performance of Equation (5) when the potential is strongly convex and smooth. That is, we
further assume that f ∈ C2(Rp;R) and ∃α, β ∈ (0,∞) such that

0 ≺ αIp ⪯ ∇2f(θ) ⪯ βIp. (7)

Now, we move towards a non-asymptotic bound for convergence of the law of the LMC iterates against the
invariant measure in the total variation norm, as seen in Theorem 2 of Dalalyan [2017].

First, we state – without proof – two useful facts about Langevin diffusions.

Fact 18 (Roberts and Tweedie [1996], Theorem 2.1). If f ∈ C1(Rp), then solutions to Equation (4) are
non-explosive, i.e. sup0≤t≤T ∥θt∥2 <∞ a.s. for all T <∞.

Since we always assume f is at least once continuously differentiable to satisfy the smoothness condition,
non-explosivity is assumed henceforth. Now, we briefly define reversibility of stochastic processes, which
holds for Langevin diffusions and makes the succeeding proofs easier to work with.

Definition 19 (Reversible Stochastic Process). A stochastic process (Xt)t≥0 is reversible (or time-reversible)
if for all sets of finite time increments 0 ≤ t1 < . . . < tn < ∞, B1, . . . , Bn ∈ B(Rp), n ∈ N, and for all
τ ∈ (tn,∞), we have

P(Xt1 ∈ B1, . . . , Xtn ∈ Bn) = P(Xτ−t1 ∈ B1, . . . , Xτ−tn ∈ Bn).

Fact 20 (Kolmogorov’s Characterization of Reversibility). If b is Lipschitz, and θ0 ∈ L2(P). Then the
solution of dXt = b(Xt) dt+ dWt is reversible.

Note that not all of our sampling algorithms will be reversible. In fact, non-reversible SDEs, such as the
Underdamped Langevin dynamic in Section 3.2, when discretized and used properly, can often lead to
improvements in sampling complexity [Wu and Robert, 2019].

Proposition 21. Assume Equation (7) holds, then

E[f(ϑ(k+1)h)] ≤ E[f(ϑkh)]−
1

2
h(2− βh)E[∥∇f(ϑkh)∥22] + βhp.

Proof. By the Descent Lemma [Fawzi, 2024], then substituting the definition of ϑ(k+1)h from Equation (5),
we have

f(ϑ(k+1)h) ≤ f(ϑkh) + ⟨∇f(ϑkh), ϑ(k+1)h − ϑkh⟩+
β

2
∥ϑ(k+1)h − ϑkh∥22

= f(ϑkh) + ⟨∇f(ϑkh),−h∇f(ϑkh) +
√
2ξkh⟩+

β

2
∥ − h∇f(ϑkh) +

√
2ξkh∥22

= f(ϑkh)− h∥∇f(ϑkh)∥22 +
√
2⟨∇f(ϑkh), ξkh⟩+

β

2
∥h∇f(ϑkh)−

√
2ξkh∥22

Taking expectations, expanding the rightmost term, and recalling E[ξkh] = 0, E[∥ξkh∥22] = ph, and ξkh ⊥∇f(ϑkh)
yields the result:

E[f(ϑ(k+1)h)] ≤ E[f(ϑkh)]− hE[∥∇f(ϑkh)∥22] +
β

2
E[h2∥∇f(ϑkh)∥22 + 2∥ξkh∥22 − 2

√
2h⟨∇f(ϑkh), ξkh⟩]

= E[f(ϑkh)] + (
βh2

2
− h)E[∥∇f(ϑkh)∥22] + βph

■
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A corollary of the above proposition will be used to prove our first lemma.

Corollary 22. Assume Equation (7). Let θ∗ = argminx∈Rp f(x), f∗ = f(θ∗), ϑ0 = θ0, h ≤ (Cβ)−1 with
C ≥ 1, and let K ≥ 1. Then

h

K−1∑
k=0

E[∥∇f(ϑkh)∥22] ≤
C

2C − 1
βE[∥θ0 − θ∗∥22] +

2C

2C − 1
βKhp.

Proof. First note h ≤ 1/(Cβ) if and only if 2− βh ≥ (2C − 1)/C. Now, by Proposition 21, we have

h(2C − 1)

2C
E[∥∇f(ϑkh)∥22] ≤ E[f(ϑkh)− f(ϑ(k+1)h)] + βhp, ∀k ∈ N.

Summing both sides from k = 0, . . . ,K − 1, the first term on the right hand side telescopes, we get

h(2C − 1)

2C

K−1∑
k=0

E[∥∇f(ϑkh)∥22] ≤ E[f(ϑ0)− f(ϑKh)] +Kβhp

≤ E[f(ϑ0)− f∗] +Kβhp,

as f∗ ≤ f(θ) ∀θ ∈ Rp. Rearranging:

h

K−1∑
k=0

E[∥∇f(ϑkh)∥22] ≤
2C

2C − 1
E[f(ϑ0)− f∗] +

2C

2C − 1
Kβhp.

As f is β-smooth, the descent lemma [Fawzi, 2024] applied to (ϑ0, θ
∗) gives

f(ϑ0)− f∗ ≤ ⟨∇f(θ∗), ϑ0 − θ∗⟩+ β

2
∥ϑ0 − θ∗∥22,

as ∇f(θ∗) = 0. Taking expectations gives 2E[f(ϑ0)− f∗] ≤ βE[∥ϑ0 − θ∗∥22]. Since ϑ0 = θ0, we are done:

h

K−1∑
k=0

E[∥∇f(ϑkh)∥22] ≤
βC

2C − 1
E[∥θ0 − θ∗∥22] +

2C

2C − 1
Kβhp.

■

Now, due to Dalalyan and Tsybakov [2012], we show an explicit formula for computing the KL divergence
between the continuous and ‘discretized’ Langevin diffusions, assuming an affine condition on the drift
coefficient.

Proposition 23. Suppose, for some B > 0, we have ∥bt(X)∥2 ≤ B(1 + ∥X∥∞) for every t ∈ [0,Kh] and
every continuous process X. Assume f is β-smooth and let θ∗ be any stationary point, i.e. ∇f(θ∗) = 0.

Then Px,Kh ∼ P̃x,Kh and

DKL(Px,Kh∥P̃x,Kh) :=

∫
Rp

log

(
dPx,Kh

dP̃x,Kh

)
dPx,Kh =

1

4

∫ Kh

0

E[∥∇f(ϑt) + bt(ϑ)∥22] dt,

where Px,Kh, P̃x,Kh is the law of (θt)0≤t≤Kh, (ϑt)0≤t≤Kh started at x, respectively.
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Proof. First let T := Kh, now recall one form of Girsanov’s theorem [Girsanov, 1960][Theorem 1]: For a
P-Brownian motion (Wt)0≤t≤T , T > 0, and previsible process γt satisfying Novikov’s condition

EP
[
exp(

1

2

∫ T

0

γ2t dt)
]
<∞,

there exists a measure Q ∼ P such that (W̃t)0≤t≤T , defined as W̃t :=Wt+
∫ t

0
γs ds, is a Q-Brownian motion.

Further, the Radon-Nikodym derivative on the measurable space of continuous functions C([0, T ];R) [Üstünel,
2010][Chapter 1.1] is given by

dQ
dP

(γ) = exp
(
−
∫ T

0

γs dWs −
1

2

∫ T

0

γ2s ds
)
.

Choosing γs :=
1√
2
(−bs(ϑ)−∇f(ϑs)), we easily have previsibility. Now we quickly verify Novikov’s condition:

E
[
exp(

1

4

∫ Kh

0

∥ − bs(ϑ)−∇f(ϑs)∥22 ds)
]
= E

[
exp(

1

4

∫ Kh

0

(∥bs(ϑ)∥22 + ∥∇f(ϑs)∥22 + 2⟨bs(ϑ),∇f(ϑs)⟩) ds)
]

≤ E
[
exp(

1

4

∫ Kh

0

(B2(1 + ∥ϑ∥∞)2

+ β2∥ϑs − θ∗∥22 +Bβ∥ϑs − θ∗∥2(1 + ∥ϑ∥∞)) ds)
]
<∞,

where the first inequality is due to ∥bs(ϑ)∥22 ≤ B2(1 + ∥ϑ∥∞)2, ∥∇f(ϑs)∥22 = ∥∇f(ϑs) − ∇f(θ∗)∥22 ≤
β2∥ϑs − θ∗∥22, and ⟨bs(ϑ),∇f(ϑkh)⟩ ≤ Bβ∥ϑs − θ∗∥2(1 + ∥ϑ∥∞) by Cauchy-Schwarz. The second inequality
is due to (ϑs) being non-explosive and continuous. Therefore there exists a probability measure Q ∼ Px,Kh

such that Wt +
∫Kh

0
1√
2
(−bs(ϑ) − ∇f(ϑs)) ds is a Q-Brownian motion. By rearranging and putting into

differential form, we have
−∇f(ϑs) dt+

√
2 dWt = bt(ϑ) dt+

√
2 dW̃t,

i.e. Q = P̃x,Kh. So we have

− log
(dP̃x,Kh

dPx,Kh
(ϑ)
)
= − 1√

2

∫ Kh

0

(−bs(ϑ)−∇f(ϑs)) dWs +
1

4

∫ Kh

0

∥ − bs(ϑ)−∇f(ϑs)∥22 ds

=⇒ DKL(Px,Kh∥P̃x,Kh) = Eϑ∼Px,Kh

[
− log

(dP̃x,Kh

dPx,Kh
(ϑ)
)]

=
1

4

∫ Kh

0

E[∥bs(ϑ) +∇f(ϑs)∥22] ds.

■

Now, we are ready to prove the first useful lemma from Dalalyan [2017].

Lemma 24. Let f be β-smooth and θ∗ ∈ Rp : ∇f(θ∗) = 0 (not necessarily a global minimum). Fixing
law(θ0) such that E[θ0] = x and number of iterations K ∈ N, if h ≤ 1/(Cβ) with C ≥ 1, then we have

DKL(Px,Kh∥P̃x,Kh) ≤
β3h2C

12(2C − 1)
(∥x− θ∗∥22 + 2Khp) +

1

4
pKβ2h2
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Proof. By Proposition 23, we have

DKL(Px,Kh∥P̃x,Kh) =
1

4

∫ Kh

0

E[∥∇f(ϑt) + bt(ϑ)∥22] dt

=
1

4

K−1∑
k=0

∫ (k+1)h

kh

E[∥∇f(ϑt)−∇f(ϑkh)∥22] dt

≤ β2

4

K−1∑
k=0

∫ (k+1)h

kh

E[∥ϑt − ϑkh∥22]︸ ︷︷ ︸
(a)

dt,

where the inequality comes from the β-smoothness of f . Now, to compute (a), we have the following equality
(in distribution):

ϑt − ϑkh
d
= bt(ϑ)(t− kh) +

√
2ξ, ξ ∼ N (0, (t− kh)Ip), t ≥ kh.

So we have

E[∥ϑt − ϑkh∥22] = E[∥bt(ϑ)∥22(t− kh)2 + 2ξ2 + 2
√
2ξbt(ϑ)(t− kh)]

= E[∥∇f(ϑkh)∥22](t− kh)2 + 2p(t− kh).

Substituting back in, we have

DKL(Px,Kh∥P̃x,Kh) ≤
β2

4

K−1∑
k=0

∫ (k+1)h

kh

(E[∥∇f(ϑkh)∥22](t− kh)2 + 2p(t− kh)) dt

=
β2

4

K−1∑
k=0

(E[∥∇f(ϑkh)∥22]
h3

3
+ ph2)

=
β2h3

12

K−1∑
k=0

E[∥∇f(ϑkh)∥22] +
β2Kph2

4

≤ β2h2

12

( 2C

2C − 1
βE[∥x− θ∗∥22] +

2C

2C − 1
βKhp

)
+
β2Kph2

4
,

where the last inequality is due to Corollary 22. ■

Now we prove the second important lemma.

Lemma 25. Assume Equation (7), let µh,x be the probability density for ϑh started at x, i.e. N (x −
h∇f(x), 2hIp). If h ≤ 1/(2β), then

Eπ

[
µh,x(ϑ)

2

π(ϑ)2

]
≤ exp

(
1

2α
∥∇f(x)∥22 −

p

2
log(2hα)

)
.

Proof. Notice that

π(ϑ)−1 = ef(ϑ)
∫
Rp

e−f(z) dz

= ef(ϑ)−f(x)

∫
Rp

e−(f(z)−f(x)) dz

≤ exp

(
∇f(x)⊤(ϑ− x) +

β

2
∥ϑ− x∥22

)∫
Rp

exp
(
−∇f(x)⊤(z − x)− α

2
∥z − x∥22

)
dz

= exp

(
∇f(x)⊤(ϑ− x) +

β

2
∥ϑ− x∥22

)∫
Rp

exp
(
−∇f(x)⊤z − α

2
∥z∥22

)
dz︸ ︷︷ ︸

=:(a)

.
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Let us focus on the integral term, write

(a) =

∫
Rp

exp

(
−α
2

(
∥z + 1

α
∇f(x)∥22 −

1

α2
∥∇f(x)∥22

))
dz

= exp

(
1

2α
∥∇f(x)∥22

)∫
Rp

exp
(
−α
2
∥z∥22

)
dz

=

(
2π

α

)p/2

exp

(
1

2α
∥∇f(x)∥22

)
.

Therefore, we have

π(ϑ)−1 =

(
2π

α

)p/2

exp

(
∇f(x)⊤(ϑ− x) +

β

2
∥ϑ− x∥22 +

1

2α
∥∇f(x)∥22

)
.

Now, we have

Eπ

[
µh,x(ϑ)

2

π(ϑ)2

]
=

1

(4πh)p

∫
Rp

exp

(
− 1

2h
∥ϑ− x+ h∇f(x)∥22

)
π(ϑ)

π2(ϑ)
dϑ

≤ 1

(4πh)p

(
2π

α

)p/2

exp

(
1

2α
∥∇f(x)∥22

)
×
∫
Rp

exp

(
− 1

2h
∥ϑ− x+ h∇f(x)∥22 +∇f(x)⊤(ϑ− x) +

β

2
∥ϑ− x∥22

)
︸ ︷︷ ︸

=:(b)

dϑ.

Where integrand can be simplified:

(b) = exp

((
β

2
− 1

2h
∥ϑ− x∥22

)
− h

2
∥∇f(x)∥22

)
= exp

(
−1− βh

2h
∥ϑ− x∥22

)
exp

(
−h
2
∥∇f(x)∥22

)
.

So

Eπ

[
µh,x(ϑ)

2

π(ϑ)2

]
≤ 1

(4πh)p

(
2π

α

)p/2

exp

(
1− hα

2α
∥∇f(x)∥22

)∫
Rp

exp

(
−1− βh

2h
∥ϑ− x∥22

)
dϑ

=
1

(4πh)p

(
2π

α

)p/2(
2πh

1− βh

)p/2

exp

(
1− hα

2α
∥∇f(x)∥22

)
= exp

(
−p
2
log (4hα(1− βh))

)
exp

(
1− hα

2α
∥∇f(x)∥22

)
≤ exp

(
1

2α
∥∇f(x)∥22 −

p

2
log(2hα)− h

2
∥∇f(x)∥22

)
≤ exp

(
1

2α
∥∇f(x)∥22 −

p

2
log(2hα)

)
,

where the second inequality comes from h ≤ 1/(2β) =⇒ (1−βh) ≤ 1/2, and the last inequality comes from
(h/2)∥∇f(x)∥22 ≥ 0. ■

Now, for the last lemma, we require the notion of geometric (or exponential) ergodicity for Markov processes.
Here, we only need to define a slightly weaker notion: L2-geometric ergodicity.

Definition 26. A Markov process with transition kernels (P t)t≥0 and invariant measure π is geometrically
ergodic with respect to L2(π), or L2(π)-geometrically ergodic, if there is γ > 0 such that for each
φ ∈ L2(π), we have

∥P tφ− π(φ)∥2L2(π) ≤ π(φ2)e−γt
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Recalling Markov chains over discrete space, we say a Markov chain is irreducible if any state can be
reached from any other state in finite time with positive probability. Here, we extend this notion, which
is useful for showing when L2(π)-geometric ergodicity is equivalent to the (stronger, usual) notion of π-a.e.
geometric ergodicity.

Definition 27. A Markov process with transition kernels (P t)t≥0 and invariant measure π is ϕ-irreducible
(or irreducible) if for the (or there exists a) positive measure ϕ over B(Rp) such that for every x ∈ Rp and
B ∈ B(Rp) with ϕ(B) > 0, there exists t > 0 such that

P t(x,B) > 0.

This leads us to a strong result by Roberts and Tweedie [1996, Theorem 2.1] which gives conditions on when
the Langevin diffusion is dx-irredible, where dx is the Lebesgue measure on Rp.

Fact 28 (Roberts and Tweedie [1996] Theorem 2.1). Suppose f ∈ C2(Rp) and, for some N, a, b < ∞, we
satisfy

⟨∇f(x), x⟩ ≤ a∥x∥22 + b

whenever ∥x∥2 > N . Then the Langevin diffusion with drift coefficient −∇f and constant diffusion coefficient
is dx-irreducible.

We also define the spectral gap with respect to diffusions, it will be useful very shortly.

Definition 29. For a (b, σ)-diffusion operator on Rp acting on f ∈ C2
c (Rp), if we have non-explosivity and

other mild conditions, then the spectral gap of L is defined as

gap(L) := inf

{∫
Rp

⟨a(x)∇f(x),∇f(x)⟩π(dx) : f ∈ D,
∫
fπ = 0,

∫
f2π = 1

}
,

where D = {f + c | f ∈ C∞
c (Rp), c ∈ R} is the space of test functions (up to constants as the expression only

involves gradients of f). We say that L has a spectral gap if gap(L) ≥ C > 0 for some C > 0.

An important result by Roberts and Tweedie [2001] allows us to reduce the task of showing L2(π)-geometric
ergodicity to the existence of a spectral gap. This will be stated as fact.

Fact 30 (Roberts and Tweedie [2001] Eqn 4. Remark + Theorem 2). If a Markov process is reversible and
ϕ-irreducible, then it is L2(π)-geometrically ergodic iff there exists a spectral gap.

Now, thanks to Chen and Wang [1997], we have the following explicit lower bound for gap(L).

Fact 31 (Chen and Wang [1997] Remark 4.14). For the SDE dXt = b(Xt) dt + σ(Xt) dWt on Rp, suppose
there exists ā > 0 such that ⟨a(x)u, u⟩ ≤ ā∥u∥22 for all x, u ∈ Rp, where a(·) := σ(·)σ(·)⊤. Also let

K := sup
x ̸=y

∥σ(x)− σ(y)∥2op + ⟨b(x)− b(y), x− y⟩
∥x− y∥22

.

Then the corresponding L-diffusion satisfies

gap(L) ≥ −Kā−1 inf
x
λmin(a(x)).

Furthermore, if the right-hand side is strictly greater than 0, then the Markov process associated with L is
also L2(π)-geometrically ergodic with exponential parameter equal to the right-hand side.
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This sequence of facts tells us that, given the drift and diffusion coefficients, we can directly compute the
lower bound for the spectral gap

Now, we prove our final lemma for this section.

Lemma 32. Let Pt
θ(x,B) := P(θt ∈ B | θ0 = x), B ∈ B(Rp) be the transition kernel of the Markov process

that is the (pathwise unique, strong) solution of Equation (4). Assuming Equation (7) holds, then for any
density µ, we have

∥µPt
θ − π∥TV ≤ 1

2
Dχ2(µ∥π)1/2e−tα/2

Proof. We have

∥µPt
θ − π∥TV = sup

B∈B(Rp)

∣∣∣∣∫
Rp

Pt
θ(x,B)µ(x) dx− π(B)

∣∣∣∣
= sup

B∈B(Rp)

∣∣∣∣∫
Rp

(Pt
θ(x,B)− π(B))µ(x) dx

∣∣∣∣
= sup

B∈B(Rp)

∣∣∣∣∫
Rp

(Pt
θ(x,B)− π(B))(µ(x)− π(x)) dx

∣∣∣∣
= sup

B∈B(Rp)

∣∣∣∣∫
Rp

(Pt
θ(x,B)− π(B))

(
µ(x)

π(x)
− 1

)
π(x) dx

∣∣∣∣
≤ sup

B∈B(Rp)

∫
Rp

∣∣Pt
θ(x,B)− π(B)

∣∣ · ∣∣∣∣µ(x)π(x)
− 1

∣∣∣∣π(x) dx
≤ sup

B∈B(Rp)

(∫
Rp

|Pt
θ(x,B)− π(B)|2 π(dx)

)1/2 (
Dχ2(µ∥π)

)1/2
,

where the first inequality is due to Jensen’s, and the second inequality is Cauchy-Schwarz on L2(π). Now,
we want to show that Equation (4) is L2(π)-geometrically ergodic. To use Fact 31, we must find ā and K.
In our case, b(θt) = −∇f(θt) and σ(θt) =

√
2Ip, so we can choose ā =

√
2. We also lower bound K:

K = sup
x ̸=y

∥σ(x)− σ(y)∥2op + ⟨b(x)− b(y), x− y⟩
∥x− y∥22

= sup
x ̸=y

⟨∇f(y)−∇f(x), x− y⟩
∥x− y∥22

≤ sup
x ̸=y

−α
2 ∥x− y∥22
∥x− y∥22

= −α
2
.

So gap(L) ≥ α
2

1√
2

infx λmin(a(x)) = α
2 . Reversibility directly follows from Fact 20 with θ0 ∼ δx ∈ L2(P)

and our β-smooth assumption on the potential f . ϕ-irreducibility follows using Fact 28 with since our
β-smoothness condition gives us

⟨∇f(x), x⟩ = ⟨∇f(x)−∇f(x∗), x⟩ ≤ β∥x− x∗∥2∥x∥2 ≤ β(∥x− x∗∥22 ∨ ∥x∥22)

where x∗ = argminx∈Rp f(x) and using Cauchy-Schwarz. WLOG we can assume that f is minimized at
0, and so Fact 28 holds with a = β, b = 0, and N = 0. Now that we have L2(π)-geometric ergodicity by
Fact 30, for any B ∈ B(Rp), choose φ(·) = 1B(·)− π(B) ∈ L2(π) so that

(E[φ(θt) | θ0 = x]− π(φ))
2
= (E[1B(θt)− π(B) | θ0 = x]− EY∼π[1B(Y )− π(B)])

2

= (Pt
θ(x,B)− π(B))2.
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Using this identity for φ(·) = 1B(·)− π(·) with the definition of L2(π)-geometric ergodicity, we have

∥P tφ− π(φ)∥2L2(π) =

∫
Rp

(Pt
θ(x,B)− π(B))2π(x) dx ≤ e−αtEY∼π[(1B(Y )− π(B))2]

= e−αtπ(B)(1− π(B)) ≤ 1

4
e−αt.

Taking square roots gives us the result. ■

Finally, we are ready to state the result, due to Dalalyan [2017], on non-asymptotic bounds of Langevin
Monte Carlo iterates in the total variation norm.

Theorem 33. Under the assumption of Equation (7), let h ≤ (Cβ)−1 and K ≥ C for some C ≥ 1. Also let
θ0 ∼ µ = N (θ∗, β−1Ip), where θ

∗ = argminθ∈Rp f(θ) (uniqueness of minimizer is due to strong convexity).
Then ∀K ∈ N, we have

∥µPKh
ϑ − π∥TV ≤ 1

2
exp

(
p

4
log

(
β

α

)
− Khα

2

)
+

√
pβ2Kh2C

4(2C − 1)
,

where µPKh
ϑ is the law of the K-th iterate of Equation (5) started at θ0 ∼ µ.

Proof. By the triangle inequality over the total variation norm, we have

∥µPKh
ϑ − π∥TV ≤ ∥µPKh

θ − π∥TV︸ ︷︷ ︸
(a)

+ ∥µPKh
ϑ − µPKh

θ ∥TV︸ ︷︷ ︸
(b)

,

where PKh
θ is the law of Equation (4) at time Kh. For (a), we first apply Lemma 32 to get

(a) ≤ 1

2
Dχ2(µ∥π)1/2e−(Khα)/2.

Evaluating the χ2 divergence:

Dχ2(µ∥π) =
∫
Rp

(
µ(x)

π(x)
− 1

)2

π(x) dx

=

∫
Rp

(
µ2(x)

π2(x)
− 2

µ(x)

π(x)
+ 1

)
π(x) dx

≤ exp

(
1

2α
∥∇f(θ∗)∥22 −

p

2
log(2Khα)

)
− 1

≤ exp
(
−p
2
log(2Khα)

)
≤ exp

(
p

2
log

(
β

2α

))
≤ exp

(
p

2
log

(
β

α

))
where the first inequality comes from Lemma 25, the second inequality comes from removing the −1 and
∇f(θ∗) = 0, and the third inequality comes from h ≤ 1/(Cβ) and K ≥ C. So we have

(a) ≤ 1

2
exp

(
p

4
log

(
β

α

)
− 1

2
Khα

)
.
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For (b), we use Pinsker’s inequality to get

(b) = ∥µPKh
ϑ − µPKh

θ ∥TV ≤ ∥µP̃θ∗,Kh − µPθ∗,Kh∥TV ≤
(
1

2
DKL(µPθ∗,Kh∥µP̃θ∗,Kh)

)1/2

.

We can use Lemma 24 to get

DKL(µPθ∗,Kh∥µP̃θ∗,Kh) ≤
β3h2C

12(2C − 1)
(Eθ0∼µ[∥θ0 − θ∗∥22]︸ ︷︷ ︸

=p/β

+2Khp) +
pKβ2h2

4

=
β2h2Cp

12(2C − 1)
+
β3h3KCp

6(2C − 1)
+
pKβ2h2

4

=
pKβ2h2

4

(
C

3K(2C − 1)
+

2βhC

3(2C − 1)
+ 1

)
≤ pβ2Kh2C

2(2C − 1)
,

where the last inequality is due to K ≥ C and h ≤ 1/(Cβ). So we have

(b) ≤

√
pβ2Kh2C

4(2C − 1)
.

Combining both bounds gives us the desired result. ■

By this theorem, if we wish to be sampling ϵ-close to our target distribution (in the TV distance), it is
sufficient to perform O(ϵ−2p3) iterations of Equation (5).

3.2 Under-damped Langevin Monte Carlo

Now, we consider an ‘under-damped’ version of Equation (4), where – in addition to the position vector
– we include a momentum vector. Intuitively, we should observe an ‘acceleration’ effect (although this is
difficult to explicitly show). One can intuit that this is to sampling what Nesterov gradient methods (see
Fawzi [2024]) are to optimization, or ‘simply’ read Ma et al. [2021]. Below is the continuous underdamped
Langevin diffusion, a system of SDEs:{

dXt = Vt dt

dVt = −∇f(Xt) dt− γVt dt+
√
2γ dWt,

(8)

where γ > 0 is the momentum coefficient.

Here is a quick proposition about the generator of both the Langevin and underdamped Langevin diffusions,
which will be useful later.

Proposition 34. The generator of Langevin diffusion is L = ∆ − ⟨∇f,∇(·)⟩. That is, Eπ[Lg] = 0 ∀g ∈
L2(π).

Proof. Plug the diffusion and drift coefficients directly into Fact 3. ■

This immediately gives us a useful lemma from Chewi [2024].
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Lemma 35 (Chewi [2024] Lemma 4.0.1). For f ∈ C2(Rp), we have the following:

1. If f is α−strongly-convex, and x∗ minimizes f , then Eπ∥ · −x∗∥22 ≤ p/α.

2. If f is β−smooth, then Eπ∥∇f∥22 ≤ βp.

Proof. Using Proposition 34, Ag = ∆g − ⟨∇f,∇g⟩, and setting g = (1/2)∥ · −x∗∥22 and g = f gives 1. and
2., respectively. For 1., we have ∇g = · − x∗, hence

0 = Eπ[∆g − ⟨∇f,∇g⟩] = p− EX∼π⟨∇f,X − x∗⟩ ≤ d− αEX∼π[∥X − x∗∥22],

then rearrange.

For 2. we have ∇2f ⪯ βIp, hence ∆f = ∇ · (∇f) ≤ βp

0 = Eπ[∆f − ∥∇f∥22] ≤ βp− Eπ∥∇f∥22,

then rearrange. ■

Here is a solution to the underdamped Langevin diffusion.

Proposition 36 (Cheng et al. [2018] Lemma 10). The following process solves Equation (8):{
Vt = V0e

−γt −
∫ t

0
e−γ(t−s)∇f(Xs) ds+

√
2γ
∫ t

0
e−γ(t−s) dWs

Xt = X0 +
∫ t

0
Vs ds.

(9)

Proof. Take derivatives and use Itô’s lemma. ■

This yields a discretization scheme, which will form the iterates of ULMC.

Fact 37 (Zhang et al. [2023] Appendix A). The conditional law of (X(k+1)h, V(k+1)h) on (Xkh, Vkh) is
N (M(k+1)h,Σ), M(k+1)h ∈ R2p, Σ ∈ R2p×2p, where

M(k+1)h =

[
Xkh + 1

γ (1− exp(−γh))Vkh − 1
γ (h− 1

γ (1− exp(−γh)))∇f(Xkh

Vkh exp(−γh)− 1
γ (1− exp(−γh))∇f(Xkh)

]
and

Σ =

[ 2
γ (h− 2

γ (1− exp(−γh)) + 1
2γ (1− exp(−2γh)))Ip

1
γ (1− 2 exp(−γh) + exp(−2γh))Ip

1
γ (1− 2 exp(−γh) + exp(−2γh))Ip (1− exp(−2γh))Ip

]
.

Following Cheng et al. [2018], under a strongly convex and smooth potential, we hope to derive non-
asymptotic convergence guarantees. We intuitively expect faster rates due to the (unproven) acceleration
effect of ULMC. Our first lemma (Theorem 5 of Cheng et al. [2018]) provides a contraction bound under a
certain norm (which is particularly useful for analyzing underdamped Langevin diffusions).

Lemma 38 (Cheng et al. [2018] Theorem 5). Let (X0
t , V

0
t ), (X

1
t , V

1
t ) be two underdamped Langevin diffusions

driven by the same Brownian motion, with strongly convex and smooth potential as in Equation (7). Defining
the norm

|||(x, v)|||2 := ∥x+

√
2

β
v∥22 + ∥x∥22

and setting γ =
√
2β, we have∣∣∣∣∣∣(X0

t , V
0
t )− (X1

t , V
1
t )
∣∣∣∣∣∣ ≤ exp

(
− αt√

2β

) ∣∣∣∣∣∣(X0
0 , V

0
0 )− (X1

0 , V
1
0 )
∣∣∣∣∣∣.
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Proof. Let δXt := X1
t −X0

t , δVt := V 1
t − V 0

t . By Itô’s formula, we have

d(δXt + ηδVt) = (δVt − η(∇f(X1
t )−∇f(X0

t ))− γηδVt) dt

=

−(γη − 1)δVt − η(

∫ t

0

∇2f((1− s)X0
t + sX1

t ) ds︸ ︷︷ ︸
=:Ht

)δXt

 dt

=

(
−(γ − 1

η
)(δXt + ηδVt) + (γ − 1

η
− ηHt)δXt

)
dt

where the second step is using Taylor’s theorem. Note that Ht ∈ Rp×p. We use Itô’s formula again to obtain

d(δXt) = δVt dt =

(
1

η
(δXt − ηδVt)−

1

η
δXt

)
dt.

Therefore, we have

1

2

d

dt

(
∥δXt + ηδVt∥22 + ∥δVt∥22

)
= −

[
δXt + ηδVt

Xt

]⊤ [ (γ − 1
η )Ip

1
2 (ηHt − γIp)

1
2 (ηHt − γIp)

1
η Ip

]
︸ ︷︷ ︸

=:St

[
δXt + ηδVt

Xt

]
.

For convenience, St ∈ R2p×2p is written in p× p blocks. Since we have the strong convexity and smoothness
assumption, the eigenvalues of Ht, denoted by (Λi)

p
i=1, are bounded below and above by α, β, respectively.

Now, we substitute in η =
√
2/β and γ = 2/η =

√
2β and explicitly compute the eigenvalues of St. That is,

we solve

det

([
(γ − 1

η − λ)Ip
1
2 (ηHt − γIp)

1
2 (ηHt − γIp) ( 1η − λ)Ip

])
= 0

=⇒ (
1

η
− λ) = −1

2
(ηΛi −

2

η
), i = 1, . . . , p

=⇒ λ =
Λi√
2β

≥ α√
2β
.

Therefore, we have
1

2

d

dt
|||(δXt, δVt)||| ≤

α√
2β

|||δXt, δVt)|||.

We can now use the differential form of Grönwall’s lemma [Miller and Silvestri, 2024] to obtain the contraction
bound. ■

Now, we note that our norm with three lines is equivalent to the Euclidean norm, i.e. (1/3)(∥x∥22 +
(2/β)∥v∥22) ≤ |||(x, v)||| ≤ 3(∥x∥22) + (2/β)∥v∥22. This follows immediately from

|||(x, v)|||2 = ∥x+

√
2

β
v∥22 + ∥x∥22 ≤ 2(∥x∥22 +

2

β
∥v∥22) + ∥x∥22

2

β
∥v∥22 ≤ 2∥x+

√
2

β
v∥22 + 2∥x∥22.

The takeaway is that bounding terms in the |||(·, ·)||| norm is equivalent to bounding both arguments in the
Euclidean norm. Our next lemma is important: bounding the expected movement of our ULD particles in
the Euclidean norm.
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Lemma 39 (Chewi [2024] Exercise 5.7). Let (Xt, Vt) be a underdamped Langevin diffusion with β-smooth
potential. If t ≤ β−1/2 ∧ γ−1, then

E∥Xt −X0∥22 ≲ t2E∥V0∥22 + γpt3 + t4E∥∇f(X0)∥22.

Proof.

∥Xt −X0∥2 = ∥
∫ t

0

Vs ds∥2 ≤ t∥V0∥2 + ∥
∫ t

0

(Vs − V0) ds∥2,

by subtracting and adding V0 then using triangle inequality. Since (a+ b)2 ≤ 2(a2 + b2), we have

∥Xt −X0∥22 ≤ 2t2∥V0∥22 + 2∥
∫ t

0

(Vs − V0) ds∥22.

Focusing on the second term on the right (without the square), we use the definition of ULD followed by the
triangle inequality to write∥∥∥∥∫ t

0

(Vs − V0) ds

∥∥∥∥
2

≤ γ

∥∥∥∥∫ t

0

∫ s

0

Vr dr ds

∥∥∥∥
2︸ ︷︷ ︸

(a)

+

∥∥∥∥∫ t

0

∫ s

0

∇f(Xr) dr ds

∥∥∥∥
2︸ ︷︷ ︸

(b)

+
√

2γ

∥∥∥∥∫ t

0

Ws ds

∥∥∥∥
2︸ ︷︷ ︸

(c)

.

An important inequality is
∫ t

0
g(s) ds ≤ t sups∈[0,t] g(s). The non-decreasing property of our terms – e.g.∫ s

0
∥Vr∥2 dr – along with the compactness of [0, t] allows us to get rid of the supremum. We also use Jensen’s

inequality to throw the norm inside of the integrals. Now, for each of the terms, we have

(a) ≤ γ

∫ t

0

∫ s

0

∥Vr∥2 dr ds

≤ γt sup
s∈[0,t]

∫ s

0

∥Vr∥2 dr

= γt

∫ t

0

∥Vs∥2 ds

≤ γt

∫ t

0

∥Vs − V0∥ ds+ γt2∥V0∥2

(b) ≤
∫ t

0

∫ s

0

∥∇f(Xr)∥2 dr ds

=

∫ t

0

∫ s

0

∥∇f(Xr)−∇f(X0) +∇f(X0)∥2 dr ds

≤ β

∫ t

0

∫ s

0

∥Xr −X0∥2 dr ds+
t2

2
∥∇f(X0)∥2

≤ βt

∫ t

0

∥Xs −X0∥2 ds+
t2

2
∥∇f(X0)∥2

(c) ≤
√
2γt sup

s∈[0,t]

∥Ws∥2.

Now, we use (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i with n = 5 to get∥∥∥∥∫ t

0

(Vs − V0) ds

∥∥∥∥2
2

≤ 5γ2t2
∫ 2

0

∥Vs − V0∥22 ds+ 5γ2t4∥V0∥22 +
5

4
t4∥∇f(X0)∥22 + 10γt2 sup

s∈[0,t]

∥Ws∥22

+ 10β2t2
∫ t

0

∥Xs −X0∥22 ds.
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We can plug this expression back into our inequality for ∥Xt −X0∥22 and take expectations to get

E∥Xt −X0∥22 ≤ t2(2 + 10γ2t2)E∥V0∥22 + 10γ2t2
∫ t

0

E∥Vs − V0∥22 ds+
5

2
t4E∥∇f(X0)∥22

+ 20γt2E[ sup
s∈[0,t]

∥Ws∥22] + 10β2t2
∫ t

0

E∥Xs −X0∥22 ds.

For the E[sups ∥Ws∥22] term, since the p-dimensional Brownian motion is the concatenation of p many inde-
pendent 1-dimensional standard Brownian motions (Bi)pi=1 [Sousi, 2023], we have

E[ sup
s∈[0,t]

∥Ws∥22] =
p∑

i=1

E[ sup
s∈[0,t]

∥Bi
s∥22]

= pE[ sup
s∈[0,t]

|Bi
s|2] ≤ 4pt,

where the first equality is by independence, second equality is by identical distributions, and the inequality
is by Doob’s Lp-inequality for p = 2 [Sousi, 2023].

Finally, using Grönwall’s inequality [Miller and Silvestri, 2024] on E∥Xt −X0∥22 along with our assumption
that t ≤ β−1/2 ∧ γ−1 gives us our desired movement bound. ■

With this, we can now state the main theorem.

Theorem 40 (Chewi [2024] Theorem 5.3.8). Assuming Equation (7). Let law(X0, V0) = µ0 ⊗ N (0, Ip),

h = ε/
√
β2p/α, γ =

√
2β, then

√
αW2(µKh, π) ≤ ε after

N = O

(
(βα )

3/2p1/2

ε
log

√
αW2(µ0, π)

ε

)
iterations of ULMC.

Proof. Let (Xt, Vt) be the discrete ULD iterates that agrees with ULMC on each t ∈ [kh, (k + 1)h) and
(X̄t, V̄t) be the ULD. We first show an inequality for one step of ULMC.

E∥Xh − X̄h∥22 = E∥
∫ h

0

(Vt − V̄t dt)∥22 ≤ h

∫ h

0

E∥Vt − V̄t∥22 dt,

where the last inequality is due to the fact that

∥
∫ t

0

g(s) ds∥22 = ∥1
t

∫ t

0

⟨t, g(s)⟩ ds∥22 ≤ t

∫ t

0

∥g(s)∥22 ds

and the linearity of expectation. Of course, we can rewrite the (Vs − V0) term inside the norm using the
definition of ULD and the fact (a+ b)2 ≤ 2(a2 + b2) to get

E∥Vt − V0∥22 ≤ 2h

∫ t

0

(E∥∇f(X̄s)−∇f(Xs)∥22 + γ2E∥Vs − V̄s∥22) ds.

We can use Grönwall’s inequality [Miller and Silvestri, 2024] with the assumption that h ≤ 1/γ to get

E∥Vt − V̄t∥22 ≤ 2h

∫ t

0

E∥∇f(X̄s)−∇f(Xs)∥22 ds exp(2h2γ2)

≤ 2h

∫ h

0

E∥∇f(X̄s)−∇f(Xs)∥22 ds

≤ 2β2h

∫ t

0

E∥X̄s −Xs∥22 ds.
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Now, we get to use our movement bound Lemma 39 to bound the triple norm of between one step of our
discrete and continuous underdamped diffusion.

E
∣∣∣∣∣∣(Xh, Vh)− (X̄h, V̄h)

∣∣∣∣∣∣ ≲ E∥Xh − X̄h∥22 +
1

β
E∥Vh − V̄h∥22

≲ βh4E∥V0∥22 + β3/2ph5 + βh6E∥∇f(X0)∥22.

With the single step bound finished, we are almost there. Let

C2(µ, ν) := inf
ϖ∈Π(µ,ν)

E(X0,X1)∼ϖ, (V0,V1)∼N (0,Ip)⊗N (0,Ip)

∣∣∣∣∣∣(X0, V 0)− (X1, V 1)
∣∣∣∣∣∣2,

This is reminiscent of an optimal transport cost under the triple norm. Since the triple norm is equivalent
to the Euclidean norm, we can use the triangle inequality followed by the contraction bound in Lemma 38
to get

C(µ(k+1)h, π) ≤ C(µ(k+1)h,µ̄(k+1)h
) + C(µ̄(k+1)h, π)

≤ exp

(
− αh√

2β

)
C(µkh, π) +

√
O(βhE∥Vkh∥22 + β3/2ph5 + βh6E∥∇f(Xkh)∥22.

Now, from Lemma 35, we have E∥V̄∞∥22 = p and E∥∇f(X̄∞)∥22 ≤ βp, where (X̄∞, V̄∞) ∼ π. It is possible
to apply this lemma to get E∥∇f(X̄∞)∥22 ≤ βp as the marginal of π̄ to x is a stationary measure of the
(overdamped) Langevin diffusion (c.f. Equation (4)), and the marginal of π̄ to v is a p-dimensional standard
normal. This gives us

E∥Vkh∥22 + h2E∥∇f(Xkh)∥22 ≲ p+ βph2 + βC(µkh, π)

≲ p+ βC(µkh, π).

So

C(µ(k+1)h, π) ≤ exp(− αh√
2β

)C(µkh, π) +O(β1/2p1/2h2 + βh2C(µkh, π)

≤ exp(− αh

2
√
β
)C(µkh, π) +O(β1/2p1/2h2),

where the second inequality comes from h ≲ α/β3/2 and absorbing the βh2C(µkh, π) term into the exponential
term. Finally, we can iterate the above inequality K times to get

C(µKh, π) ≤ exp(−αKh
2
√
β
)C(µ0, π) +O(

βp1/2h

α
).

Solving backwards for ε gives us the desired result. ■

3.3 Metropolis-Adjusted Langevin Algorithm

One of the original remarks made by Roberts and Tweedie [1996] was to avoid using Langevin Monte Carlo
due to the sensitivity of the Markov chain with respect to the choice of step size h. Another issue is that
LMC is biased: looking at Theorem 33, we see that the second term provides an upper bound on the bias
term ∥µP∞

ϑ −π∥TV . This is due to the Euler-Maruyama discretization of the continuous Langevin diffusion.
There have been attempts throughout the years to resolve this issue, such as the recent Random Midpoint
Method by Shen and Lee [2019]. The main idea is to use an extra source of randomness in the length of the
step size to mitigate bias.
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In this section, we will focus on the Metropolis adjustment. Similar to the Random Midpoint Method, we
add an extra source of randomness. However, instead of randomly choosing the length of the step size and
performing two iterations, we propose a new point based on our current point and the dynamics, then
accept or reject the new point based on a randomized rule. To be more specific, let Q(·, ·) be a proposal
kernel (or a Markov transition kernel), i.e. for each x ∈ Rp, Q(x, ·) is a probability density on Rp. Supposing
we are at a point xk ∈ Rp during the k-th iteration, we then sample y ∼ Q(xk, ·). Now, we will set xk+1 := y
with probability A(xk, y), or set xk+1 := x with probability 1 − A(xk, y), where A(x, y) ∈ [0, 1] outputs an
acceptance probability based on the original and proposed location.

Algorithm 1 Generic Metropolis Algorithm

Input: Initial state x0, number of iterations N , proposal kernel Q(·, ·), acceptance probability A(·, ·), target
distribution π(x)

Output: (Approximate) samples from the target distribution π(x)
for k = 1 to N do

Sample y ∼ Q(xk−1, ·)
Compute :

A(xk−1, y) = 1 ∧ π(y)Q(y,xk−1)
π(xk−1)Q(xk−1,y)

Sample u ∼ Uniform(0, 1)
if u ≤ A(xk−1, y) then

Accept the proposed step: xk = y
else

Reject the proposed step: xk = xk−1

end if
end for
return {x1, x2, . . . , xN}

In the context of the Metropolis adjustment, we explicitly define the acceptance probability to be

A(x, y) := 1 ∧ π(y)Q(y, x)

π(x)Q(x, y)
. (10)

Now, our choice of Q(·, ·) will completely determine the sampling algorithm. For example, if we choose Q
such that Q(x, ·) = N (x, hIp), where h > 0 is the step size, then we obtain the Metropolized random walk.
This is a simple but rather effective algorithm that does not require the evaluation of the gradient of the
potential. We are only required to know the density of our invariant distribution π up to the normalization
constant.

In the context of Langevin samplers, the obvious thing to do is to choose

Q(x, ·) = N (x− h∇f(x), 2hId), (11)

which is one iterate of Equation (5). This will be the main focus of this section.

The Metropolis-adjusted samplers, being the gold standard for empirical samplers, is notoriously difficult
to analyze. This section’s aim is to survey – without proofs – some important convergence results under
different settings. At the end, we will see how ULMC can assist in speeding up the convergence of MALA.

3.3.1 Feasible Starts

Feasible start refers to when we set our initial distribution to be N (x∗, β−1Ip), where x
∗ = argminx f(x)

– assuming that the potential is strongly convex and β−smooth. We have the following results from Chen
et al. [2020].
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Fact 41 (MRW, Feasible Start). Assuming π ∝ e−f is α-strongly-log-concave and β-smooth. Then, using
the Metropolis Random Walk algorithm, under a feasible start with step size h = O(α/(β2p)), we achieve√

Dχ2(µNh∥π) ≤ ε

after

N = O
(
p
β2

α2
log
(p
ε

))
many iterations, where µNh is the law of the N -th MRW iterate.

We provide a similar statement for MALA.

Fact 42 (MALA, Feasible Start). Assuming π ∝ e−f is α-strongly-log-concave and β-smooth. Then, using
the Metropolis-adjusted Langevin Algorithm, under a feasible start with step size h = O(1/βp(1 ∨

√
β/αp)),

we achieve √
Dχ2(µNh∥π) ≤ ε

after

N = O

(
p
β

α

(
1 ∨

√
β

αp

)
log
(p
ε

))
many iterations, where µNh is the law of the N -th MALA iterate.

3.3.2 Warm Starts

A warm start initialization refers to any initial distribution µ0 such that

Dχ2(µ0∥π) = O(1).

Here is a more precise definition.

Definition 43. A probability measure µ is said to be M -warm with respect to another probability measure
π if

µ(B) ≤Mπ(B) ∀B ∈ B(Rp).

We easily see that this definition implies the imprecise definition since∫
(
dµ

dπ
− 1)2dπ ≤M − 1.

Warm start mixing times, as well as how to obtain warm starts, have been a recent hot topic. This is due to
practitioners wanting to circumvent the curse of dimensionality: the χ2 divergence of the initial distribution
from the target distribution grows at least exponentially with p [Lee et al., 2021a][Theorem 3]. We first
showcase some mixing times, then explain how ULMC can be used to obtain warm starts for MALA.

Fact 44 (Wu et al. [2021], Chewi et al. [2020]). Assuming α-strong log-concavity and β-smooth potential.
For any accuracy ε > 0, the Metropolis-adjusted Langevin algorithm with an M -warm start and step size

h = O
(

α1/2

β4/3p1/2 log(dβM/(αε))

)
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will achieve √
Dχ2(µNh∥π) ≤ ε

after

N = O
(
β4/3p1/2

α3/2
log

(
M

ε

)
log

(
p
β

α
+
M

ε

))
many iterations of MALA.

If we absorb the poly-logarithmic terms, for the purposes of sampling from high-dimensional distributions,
under a warm start, we only require N = Õ(

√
p) many iterations. Naturally, we ask how one can obtain a

warm initialization.

3.3.3 ULMC for Warm Starts

The main issue with obtaining warm starts is that the algorithm used to obtain the warm measure must
have complexity less than or equal to MALA (or any metropolized sampler). Most importantly, in the case
of sampling from high-dimensional distributions, is the dependence on dimension p.

Surprisingly, we are able to obtain a warm-start distribution via the underdamped Langevin Monte Carlo
sampler discussed in Section 3.2. The extremely recent result Altschuler and Chewi [2024] proves this. We
first define the Rényi divergence and discuss its relation to the χ2-divergence.

Definition 45. For q > 1, the q-Rényi divergence between two probability measures µ, ν is

DRq
(µ∥ν) = 1

q − 1
log

(∫
Rp

(
dµ

dν
)q dν

)
.

By direct manipulation of the definition, we have that

log(1 +Dχ2(µ∥ν)) = DR2
(µ∥ν).

Therefore, the bound that we will state in Rényi divergence will be directly applicable to the above mixing
time theorems. Now, we are ready to state the theorem.

Fact 46 (Altschuler and Chewi [2024]). Assume that the potential is α-strongly convex and β-smooth. Let µkh

denote the law of the k-th iterate of ULMC with γ =
√
2β and µ0 = N (x∗, β−1Ip), where x

∗ = argminx f(x).
Let ε > 0 be the target accuracy. Then, for step size

h = O(
ε√
β2p/α

),

we will have √
DR2(µNh∥π) ≤ ε

after

N = O
(
β3/2p1/2

α3/2ε

)
= Õ(

√
p)

many ULMC iterations.
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3.4 Proximal Sampling

Proximal sampling is an new class of samplers and an active area of research [Lee et al., 2021b, Chen
et al., 2022]. The theory of proximal sampling is extremely useful and is often applied to analyze related
sampling algorithms. Additionally, proximal sampling also has connections to Wasserstein gradient flows,
an important by-product of optimal transport theory [Villani et al., 2009].

Recall from convex optimization that the proximal operator is defined on the Euclidean space as

proxh,f (·) := argmin
x∈Rp

{
f(x) +

1

2h
∥x− ·∥22

}
.

In the context of minimizing convex composite functions f + g, the proximal gradient method is useful when
one of the functions is not differentiable, but whose proximal operator is easily computable and can be viewed
as an oracle. Intuition is that the proximal operator regularizes the problem. This motivates the definition
of a proximal sampler.

Recalling that π ∝ e−f is our target distribution. Fixing h > 0, we can augment the target with an additional
variable of the same dimension to have the following joint distribution

π̃(x, y) ∝ exp

(
−f(x)− ∥y − x∥22

2h

)
on Rp × Rp.

Viewing this augmented joint distribution, we can check four things. Note that ∝x denotes proportionality
up to a constant dependent not on x. In this case, the constant depends only on y.

• The marginal of π̃ with respect to X is πX ∝ π.

• The conditional distribution of Y given X is πY |X(·|x) = πY |X=x(·|X = x) = N (x, hIp).

• The marginal of π̃ with respect to Y is πY = πX ∗N (x, hIp), where ∗ denotes the convolution operator.

• The conditional distribution of X given Y is πX|Y (x|y) ∝x exp
(
−f(x)− 1

2h∥x− y∥22
)
.

The idea of the proximal sampler is to sample from both conditional distributions (Gibb’s sampling on π̃).
Given x0 ∈ Rp, for each iterate k = 0, 1, . . ., we perform:

1. Sample yk ∼ πY |X(·|xk) = N (xk, hIp).

2. Sample xk+1 ∼ πX|Y (·|yk)

Since we are essentially performing Gibbs sampling, we borrow their theory and state that the proximal
sampler is unbiased [Douc et al., 2018][Chapter 2.3.3].

Sampling from a normal distribution is easy enough, but we are not quite sure how to perform the second
step. If we had access to, say, an oracle sampler that, when queried with y ∈ Rp, returns a random variable
with distribution πX|Y (·|y), things would be nice. This object in proximal sampling is called the restricted
Gaussian oracle (RGO).

Of course, in practical applications, we do not magically have access to oracles. Instead, we sample from the
RGO using other sampling methods – such as rejection sampling, or the warm-started Metropolis-adjusted
Langevin Algorithm. This also means the complexity of the proximal sampler is equal to the complexity of
the RGO sampler multipied by the number of iterations.
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We will prove convergence under strong log-concavity. The analysis of proximal samplers is fascinating – we
use tools developed in Jordan et al. [1998] – as will be seen shortly. In fact, the RGO is a proximal operator
(in the classical optimization sense) in the Wasserstein space (P2,ac(Rp),W2). That is, given a functional
F : P2,ac(Rp) → R̄, the proximal operator on Wasserstein space is defined as

proxF (µ) := argmin
ν∈P2,ac(Rp)

{
F (ν) +

1

2
W 2

2 (µ, ν)

}
. (12)

This follows from Lemma 15 and Equation (3) via a discretization, which Jordan et al. [1998] computes in
greater detail. Now, we prove a connection between the Wasserstein proximal operator and the RGO. This
requires a result on product measures.

Proposition 47. Let x ∈ Rp, then for any µ ∈ P(Rp) we have Γ(µ, δx) = {µ⊗ δx} (i.e. the product measure
is the unique coupling).

Proof. Let γ ∈ Γ(µ, δx), we wish to show γ(A × B) = µ(A)δx(B) for all Rp−Borel sets A,B. Obviously, if
x /∈ B then µ(A)δx(B) = 0 and γ(A×B) ≤ γ(Rp ×B) = δx(B) = 0. If x ∈ B, then µ(A)δx(B) = µ(A) and
γ(A× (Rp \B)) = 0. Hence

µ(A)δx(B) = µ(A) = γ((A×B) ∪ (A× (Rp \B)))

= γ(A×B) + γ(A× (Rp \B)) = γ(A×B)

■

Lemma 48 (Chewi [2024] Exercise 8.1). For all y ∈ Rp,

πX|Y (·|y) = proxhDKL(·∥πX)(δy),

where δy is the Dirac measure at y.

Proof. We borrow a fact from Ambrosio et al. [2005][Remark 9.4.2]: For a Borel measure µ on Rp and a
Borel map V : Rp → (−∞,+∞] such that

• V (x) ∨ 0 ≤ A+B∥x̄− x∥22 for all x ∈ Rp and some A,B ≥ 0 and some x̄ ∈ Rp,

• µ̄ := e−V µ is a probability measure,

we have, for all ν ∈ P2,ac(Rp),

DKL(ν∥µ) = DKL(ν∥µ̄)−
∫
Rp

V (x)ν(dx).

Choosing µ = πX , µ̄ = πX|Y=y, and V = (1/2h)∥ · −y∥22 + C(y) – where C(y) is a constant depending only
on y which appears after absorbing the y terms in πX|Y=y ∝x exp(−(1/2h)∥x− y∥22)πX into the exponential
– we have

DKL(µ∥πX) = DKL(µ∥πX|Y=y)− 1

2h

∫
Rp

∥x− y∥22µ(dx) + C(y).

Rearranging, we have

DKL(µ∥πX|Y=y) = DKL(µ∥πX) +
1

2h

∫
Rp

∥x− y∥22µ(dx)− C(y).
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Obviously, the functional DKL(·∥πX|Y=y) is minimized over P2,ac(Rp) at πX|Y=y. So by putting argmin
over µ ∈ P2,ac(Rp) on both sides of the equation, we have

πX|Y=y = argmin
µ∈P2,ac(Rp)

{
DKL(µ∥πX) +

1

2h

∫
Rp

∥x− y∥22µ(dx)
}

= argmin
µ∈P2,ac(Rp)

{
DKL(µ∥πX) +

1

2h
W 2

2 (µ, δy)

}
= proxhDKL(·∥πX)(δy),

where the second equality comes from Proposition 47, and the last is by definition. Note that we indeed
have uniqueness of argmin due to the strong geodesic convexity of DKL(·∥π) as seen in Fact 17. ■

Now we can present the result from Chen et al. [2022].

Theorem 49 (Chewi [2024] Theorem 8.2.1). Assuming πX is α-strongly log-concave, let (µX
k ), (µ̄X

k ), k ≥ 0
be two copies of the iterates of the proximal sampler. Then

W2(µ
X
k , µ̄

X
k ) ≤ 1

(1 + αh)k
W2(µ

X
0 , µ̄

X
0 ).

Proof. Note that the proof utilizes sub-differential calculus from convex optimization [Fawzi, 2024]. From
Lemma 48, we have

πX|Y=y = argmin
µ∈P2,ac(Rp)

{
DKL(µ∥πX) +

1

2h
W 2

2 (µ, δy)

}
.

Using another fact from Ambrosio et al. [2005][Lemma 10.1.2], we know that optimality conditions are the
same for Wasserstein as it is on Euclidean space. That is, our minimizer πX|Y=y must satisfy

1

h
(y − id) ∈ ∂DKL(π

X|Y=y∥πX),

where ∂DKL(·∥πX) is the sub-differential. Therefore, for two y, ȳ ∈ Rp, we have

id ∈ y − h ∂DKL(π
X|Y=y∥πX), πX|Y=y-a.s.

id ∈ ȳ − h ∂DKL(π
X|Y=ȳ∥πX), πX|Y=ȳ-a.s.

Let T be the optimal transport map from πX|Y=y to πX|Y=ȳ. Using Ambrosio et al. [2005][Theorem 6.2.4],
we know T is the unique transport map. We apply T on both sides to get

T ∈ ȳ − h ∂DKL(π
X|Y=y|πX) ◦ T, πX|Y=y-a.s.

Now we can write, πX|Y=y-a.s., that

T − id ∈ (ȳ − y)− h ∂
(
DKL(π

X|Y=ȳ∥πX) ◦ T −DKL(π
X|Y=y∥πX)

)
.

Let δ(πX|Y=y) ∈ ∂DKL(π
X|Y=y∥πX) and δ(πX|Y=ȳ) ∈ ∂DKL(π

X|Y=ȳ∥πX). Then we can write

∥T − id∥2 = ∥ȳ − y∥2 − 2h⟨δ(πX|Y=ȳ) ◦ T − δ(πX|Y=y), T − id⟩ − h2∥δ(πX|Y=ȳ) ◦ T − δ(πX|Y=y)∥2

≤ ∥ȳ − y∥2 − 2hα∥T − id∥2 − h2α2∥T − id∥2,

where ∥·∥ is an abbreviation for ∥·∥L2(πX|Y =y), and the inequality comes from the geodesic α-strong convexity

of DKL(·∥πX) induced by the α-strong log-concavity of πX in Fact 17. Now we integrate with respect to
πX|Y=y, obtaining

W 2
2 (π

X|Y=y, πX|Y=ȳ) ≤ ∥ȳ − y∥22 − 2αhW 2
2 (π

X|Y=y, πX|Y=ȳ)− α2h2W 2
2 (π

X|Y=y, πX|Y=ȳ).

We do a little rearranging and get the result. ■
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We note the elegance of the proof based on only using calculus in the Wasserstein space. Before ending the
section, it is crucial to note that there are important techniques for analyzing proximal samplers that are
not considered here. Notably, we have simultaneous flow – based on the observation that applying the heat
equation (diffusion with no drift coefficient and constant diffusion coefficient) to πX and µX

k transforms the
measures into πY and µY

k , respectively. This, combined with the fact that we can reverse the heat flow with
a specified final condition (in the form of a probability measure) [Anderson, 1982], provides us with a way
to move both forwards and backwards in time, as well as between the X and Y marginals of π̃.

3.5 Hamiltonian Monte Carlo

There are two more important algorithms that are very popular and should be covered, albeit very briefly:
Hamiltonian Monte Carlo methods and its Metropolized version. They can be viewed as a generalization of
Langevin Monte Carlo methods. We only provide basic definitions and how they work, as they are still an
important class of samplers. A good introduction would be Betancourt [2017], while those wishing to dive
into greater theory would enjoy Arnold [1978], Hairer et al. [2006].

Similar to the underdamped Langevin diffusion, we add a momentum variable v. This leads to an augmen-
tation of the target density to be

π̃ ∝ exp

(
−f(x)− 1

2
∥v∥22

)
.

The term is the exponential is also known as the Hamiltonian, denoted by H(x, v) := f(x) + 1
2∥v∥

2
2. The

pair (x, v) are then governed by Hamilton’s equations:{
d
dtxt = ∇vH(xt, vt) = vt
d
dtvt = −∇xH(xt, vt) = −∇f(xt).

This system can also be written as [
d
dtxt
d
dtvt

]
=

[
0 Ip

−Ip 0

]
︸ ︷︷ ︸

=:J

∇H(xt, vt). (13)

For initial conditions (x0, v0) ∈ Rp × Rp, let F : R+ × Rp × Rp → Rp × Rp be the solution of Equation (13)
started at (x0, v0) at time t. That is, for every t ≥ 0 and initial conditions (x0, v0) ∈ Rp × Rp, Ft(x0, v0) =
(xt, vt).

We note that, for fixed t, our augmented distribution is invariant under Ft. That is, (Ft)#π̃ = π̃, where #
denotes the pushforward action of maps on measures. However, simply having (x0, v0) ∼ µ0 and running
t → ∞ does not necessarily lead to convergence. For example, limt→∞DKL((Ft)#µ0∥π̃) ̸= 0 when f(x) =
(1/2)∥x∥22 and µ0 is chosen such that DKL(µ0∥π̃) ̸= 0.

This motivates the refreshing of momentum. We fix an integration time T > 0, then after every T units
of time, we sample a new momentum vector to replace the current momentum vector. Intuitively, this means
every T seconds, a random Gaussian force acts on our particle. Thus, in the ideal world, we would have the
following algorithm.

Definition 50 (Ideal HMC). Given T > 0 and µ0 ∈ P(Rp × Rp), sample (x0, vt) ∼ µ0. Now, for each
k ∈ N:

1. Sample v′kT ∼ N (0, Ip).
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2. Set (x(k+1)T , v(k+1)T := FT (xkT , v
′
kT ).

Afterwards, output (xkT )
K
k=0 for some K ∈ N. These are the samples from the Ideal HMC.

As such, we have an optimal result for the convergence of Ideal HMC from Chen and Vempala [2022].

Fact 51. Assume that the target distribution π ∝ exp(−f) satisfies β-smoothness and α-strong log-concavity.
For each k ∈ N, let πX

kT denote the law of xkT defined from the Ideal HMC iterates with integration time
T > 0. Specifically, if we choose T = 1/(2

√
β), then we have

W 2
2 (π

X
NT , π) ≤ exp

(
−Nα
16β

)
W 2

2 (µ
X
0 , π).

However, it is intractable to integrate Hamilton’s equations exactly, and we must resort to a numerical ODE
solver. The most popular solver in the context of HMC is the leapfrop integrator [Neal, 2012]. Fixing N ∈ N
and integration time T > 0, the leapfrog integrator with K ∈ N iterations and step size h > 0 has the
following iterations for k = 0, 1, . . . ,K − 1:

1. Set v(k+1/2)h := pkh − (h/2)∇f(xkh).

2. Set x(k+1)h := xkh + hv(k+1/2)h.

3. Set v(k+1)h := v(k+1/2)h − (h/2)∇f(x(k+1)h).

After the iterations, we have approximately integrated Hamilton’s equation up until TN . Now, we refresh
our momentum vector and repeat the above procedure again.

3.5.1 Metropolized Hamiltonian Monte Carlo

The obvious thing to do now is to add a Metropolis-adjustment to our above algorithm. Namely, we have,
for initial position vector x0 ∼ πX

0 . For k = 0, 1, . . .:

1. Sample vk ∼ N (0, Ip).

2. Propose (x′, v′) = Fl,N,h(xk, vk).

3. With probability 1 ∧ exp(H(xk, vk)−H(x′, v′)), set xk+1 := x′. Otherwise, set xk+1 := xk.

Notice that when N = 1, i.e. we use a 1-step leapfrog integrator, the above algorithm reduces to MALA.

4 Simulations

In this section, we briefly perform some simple experiments that utilize the samplers developed in Section 3.
It should be noted that there is still a large gap between observed empirical phenomena of samplers and
our theoretical understanding of their dynamics and mixing times. Therefore, this section serves more
as a playground, and we cannot reasonably, even empirically, conclude anything concrete. However, it is
still fruitful to see the samplers that we have developed throughout the paper be applied. Also note that
many of the parameters and hyper-parameters chosen in the two sections below are mostly arbitrary and
do not use any theoretically-backed or empirically-backed guidelines. The (anonymized) code is available at
https://anonymous.4open.science/r/LangevinSampling/.
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Figure 1: A plot of the probability density function induced by the potential in Equation (14).

4.1 Sampling from a Mixture of Gaussians in 1D

We test our samplers by sampling from the density π ∝ exp(−f), p = 1, where:

f(x) = log

(
exp

(
−1

2
∥x− 2∥22

)
+ exp

(
−1

2
∥x+ 2∥22

))
, (14)

i.e. a sum of two Gaussians (see Figure 1). Since the theory developed in Section 3 does not cover the case
when the potential if non-convex, it may be of interest to consider such a potential. For each sampler, we
will run K = 10000 iterations starting at x0 = 0. All samplers will use h = 0.1. For ULMC, we will sample
v0 ∼ N (0, 1) and choose γ = 1. For the Hamiltonian Monte Carlo and Metropolize Hamiltonian samplers,
we use N = 10 leapfrog steps. The results are seen in Figure 2.

For LMC, ULMC, HMC, and MHMC, we observe good matching between the empirical density formed from
the Markov chain’s samples and true density. MRW is also relatively great, although it is slightly biased
towards the rightward mode, presumably due to the initialization at 0 followed by a first rightward step (for
this random seed). MALA, however, seems to be completely stuck in the leftward mode. Some possible
explanations include (1) incompatible step-size, (2) lack of ‘burn-in period’, which involves throwing away
the first, say, 10% of samples generated by the method. It may also be due to (3) an unconditioned proposal
distribution, i.e. it may be more fruitful to propose N (x − hH(x)∇f(x), 2hId), where H is some chosen
matrix-valued function, e.g. the inverse Hessian of f , if it exists. This is known as pre-conditioning.

4.2 Bayesian Logistic Regression

A simple application of these samplers is to sample from the posterior distribution of the parameters governing
a logistic regression model without intercept, also known as Bayesian logistic regression [Gelman et al., 1995].
For our toy problem, we will generate a classification dataset with 2 features and 100 data-points, half of
which are held-out until the testing/predictive phase. These data-points are standardized to mean 0 and
standard deviation 1 before-hand.

By specifying a multivariate Gaussian (or Laplacian) as the prior, we implicitly define a posterior distribution,
which our samplers will attempt to sample from. The covariance matrix for these distributions can be
specified to be isotropic (i.e. N (0, λIp)) with hyper-parameter λ > 0 to up-weight or down-weight the effect
of the prior. We choose λ = 10, h = 0.01, K = 100. To form our prediction, we sample 1000 times from the

34



(a) (b) (c)

(d) (e) (f)

Figure 2: A table that plots the empirical densities in orange – with the target density in blue – for each of the
following samplers: (a) Langevin Monte Carlo, (b) Underdamped Langevin Monte Carlo, (c) Hamiltonian
Monte Carlo, (d) Metropolized RandomWalk, (e) Metropolis-adjusted Langevin Algorithm, (f) Metropolized
Hamiltonian Monte Carlo.
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Figure 3: For both plots, the points colored yellow refer to test points under class Yi = 1, the points colored
purple refer to test points under class Yi = 0. The abscissa and ordinate refer to the first and second
coordinates of the test inputs X1

i and X2
i , respectively. The contour in the background is the posterior

predictive functions’ output on uniformly spaced points in [−3,+3]2. As seen in the temperature scale on
the right sides of both figures, areas where the posterior predictive distribution has high confidence that
the input is class 1 exhibit darker blue colors, vice versa for class 0 exhibiting darker red colors. For points
where the predictive distribution is more uncertain, i.e. near the decision boundary, the color is lighter and
closer to white. (a) refers to using the LMC sampler to sample from the posterior after specifying a isotropic
Gaussian prior, (b) refers to using the HMC sampler to sample from the posterior after specifying a isotropic
Gaussian prior.
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posterior predictive distribution and average the outputs. For Hamiltonian Monte Carlo, we run N = 10
leapfrog steps. The predictive landscape is displayed in Figure 3.

5 Discussion

We have surveyed a small (but important) subset of sampling algorithms with a focus on Langevin-type
samplers. The theoretical results presented can provide valuable insight for practical applications. However,
these convergence properties have only been shown for strong convexity and smoothness of the potential
function. In real-world applications, these assumptions seldom hold — in fact, most Bayesian posteriors are
not even convex [Altmeyer, 2022]. Other distributions, such as the multi-modal distribution considered in
Section 4.1, also do not satisfy the assumptions. In spite of these violations, empirical performance is still
good [Dias and Wedel, 2004]. As such, a large portion of current research is bridging this gap. Another
research direction is in transporting ideas from convex optimization to log-concave sampling.

Practically, there is also the possibility of exploring diagnostic tools for assessing the quality of the samples
generated by the algorithm. Refer to Cowles and Carlin [1996] for details. Using domain-specific knowledge
to create ad-hoc sampling algorithms that incorporate structural assumptions about the target distribution
is also an active area of work, for example in protein design [Ovchinnikov and Huang, 2021, Hosur et al.,
2012]. As the field of machine learning continues to evolve to tackle the increasingly high-dimensional and
complex problems, the development of more efficient or effective sampling techniques — along with their
analysis — will continue to play a key role.

36



References

Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex X. Lu, Nicolo Fusi, Ava P. Amini, and
Kevin K. Yang. Protein generation with evolutionary diffusion: sequence is all you need. bioRxiv,
2023. doi: 10.1101/2023.09.11.556673. URL https://www.biorxiv.org/content/early/2023/09/12/

2023.09.11.556673.

Randolf Altmeyer. Polynomial time guarantees for sampling based posterior inference in high-dimensional
generalised linear models. arXiv preprint arXiv:2208.13296, 2022.

Jason M. Altschuler and Sinho Chewi. Faster high-accuracy log-concave sampling via algorithmic warm
starts. J. ACM, mar 2024. ISSN 0004-5411. doi: 10.1145/3653446. URL https://doi.org/10.1145/

3653446. Just Accepted.
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