
Computing Interval Range Approximations for Smooth Real

Functions with Applications in Real-root Isolation

by

Ya Shi Zhang

A thesis submitted in partial fulfillment

of the reqirements for the degree of

Bachelor of Arts

Department of Computer Science

New York University

May, 2023

Professor Chee Yap

© Ya Shi Zhang
all rights reserved, 2023

To my family, whose unwavering love and encouragement leave me forever grateful.

Acknowledgements

I would like to express my deepest appreciation to the following individuals and organizations
for their invaluable support and assistance throughout the completion of this thesis:

First and foremost, I am grateful to my thesis advisor Chee K. Yap for his unwavering guid-
ance, patience, and expertise. His insightful comments, constructive criticism, and encourage-
ment have been critical to the development of this thesis.

I am thankful to Professor Kai Hormann of Università della Svizzera italiana for his invaluable
contributions in the writing of the original preprint, assistance with computational experiments,
and for being a kind mentor.

I am grateful to the faculty and staff of the Courant Institute of Mathematical Sciences, the
Center for Data Science, and New York University for providing me with a stimulating and sup-
portive academic environment. Their dedication to excellence in teaching and research has been
an inspiration to me throughout my academic journey.

I am especially grateful to Dr. McDonald, my high school mathematics teacher, for inspiring
all of my endeavors in mathematics and subsequently computer science. From my expository on
Boolean rings and algebras in high school, I’ve come a long way in developing my mathematical
maturity, though I still do not understand category theory.

I would like to express my appreciation to my family and friends for their constant love,
encouragement, and support. Their unwavering belief in me has been a source of motivation and
inspiration.

v

Preface

Many people learn about polynomials in middle school and high school. Quadratic polynomials
are investigated in various depths, depending on mathematical maturity. When I was in middle
school, I had not payed mathematics any attention. I vividly remember being asked to find the
roots of the polynomial 𝑥2 − 3𝑥 + 2 via factorization, where I could not answer.

It was not until almost a year afterwards when I found my passion in mathematics and began
seriously studying it. At the time, I was particularly attracted to abstract algebra, notably groups,
rings, and algebras. While writing my high school’s expository essay, I encountered the non-
solvability of the quintic polynomial (andmore generally, the Abel-Ruffini theorem) and algebraic
numbers. It wouldn’t be until this year, when I learned Galois theory, that I would come to fully
understand why.

In my third year at New York University, Chee introduced me to range functions and their
applications in real-root isolation (which will be discussed later). I was immediately drawn in.
As an undergraduate student, I am very delighted to have contributed new methods that aid in
finding roots of polynomials, a topic that has piqued my interest from the beginning.

It is also slightly comical that I began my journey unable to factor a quadratic to find its
roots, to now having played a role in developing a theoretical framework that approximates any
polynomial (including those with degree greater than or equal to 5) to any arbitrary precision. I
hope you enjoy reading this as much as I enjoyed working on this.

Note: this thesis will contain a lot novel material found in a recent preprint that Professor
Kai Hormann, Professor Chee Yap, and I worked on. As such, this thesis can be viewed as a
self-contained and motivating expository of the paper.

vi

Abstract

We address the fundamental problem of computing range functions 𝑓 for a real function 𝑓 :
R→ R. In our previous work in ISSAC 2021, we introduced a family of recursive interpolation
range functions based on the Cornelius–Lohner (CL) framework of decomposing 𝑓 as 𝑓 = 𝑔 +
𝑅. The CL framework requires computing 𝑔(𝐼) “exactly” for an interval 𝐼 . This requirement is
impossible to fulfil in practice and limits the order of convergence to 6.

We generalize the CL framework by allowing𝑔(𝐼) to be approximated by strong range func-
tions 𝑔(𝐼 ; 𝜀), where 𝜀 > 0 is a user-specified bound on the error. This new framework allows,
for the first time, the design of interval forms for 𝑓 with any desired order of convergence. To
achieve our strong range functions, we generalize Neumaier’s theory of constructing range func-
tions from expressions over a Lipschitz class Ω of primitive functions. We show that the class Ω
is very extensive and includes all common hypergeometric functions.

Traditional complexity analysis of range functions is based on individual evaluation on an
interval. Such analysis cannot differentiate between our novel recursive range functions and
classical Taylor-type range functions. Empirically, our recursive functions are superior in the
“holistic” context of the root isolation algorithm Eval. We now formalize this holistic approach by
defining the amortized complexity of range functions over a subdivision tree. Our theoretical
model agrees remarkably well with the empirical results.

Among our previous novel range functions, we identified a Lagrange-type range function
𝐿′
3 𝑓 as the overall winner. In this paper, we introduce a Hermite-type range function 𝐻

4 𝑓 that
is even better.

vii

Contents

Dedication iv

Acknowledgments v

Preface vi

Abstract vii

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Motivating Interval Arithmetic . 2
1.2 Preliminaries . 2

1.2.1 Interval Arithmetic . 2
1.2.2 Range Functions . 6
1.2.3 Box Forms . 7

2 Review of Literature 9
2.1 Cornelius & Lohner Form . 10

2.1.1 Higher Dimensional Extensions . 12
2.2 K. Hormann, L. Kania, and C. Yap 2021 . 13

2.2.1 Classical Taylor Forms . 13
2.2.2 Taylor Forms with Higher Orders of Convergence 14
2.2.3 Recursive Interpolation Forms . 15
2.2.4 Recursive Lagrange Forms with Cubic Convergence 16
2.2.5 A Cheaper Variant of the Recursive Lagrange Form 17
2.2.6 Recursive Lagrange Forms with Quartic Convergence 18

3 Results 20
3.1 Overview . 20
3.2 Generalizing the Cornelius & Lohner Framework 20

viii

3.3 Precision-Bounded Box Forms . 22
3.3.1 Lipschitz Expressions . 22

3.4 Quartic Range Functions using Hermite Interpolation 25
3.5 Complexity Analysis of Practical Range Functions 27

3.5.1 Amortized Complexity of the Cheap Cubic Lagrange Form 28
3.5.2 Amortized Complexity of the Quartic Hermite Form 29
3.5.3 Amortized Complexity for General Hermite Forms 29

4 Experiments 31
4.1 Real-Root Isolation and the Eval Algorithm . 31
4.2 Estimating the Range of the Derivative . 32

4.2.1 Generalized Taylor Forms . 32
4.2.2 Cubic Lagrange Forms . 33
4.2.3 Quartic Hermite Forms . 34

4.3 Methodology and Settings . 34
4.4 Results . 35

4.4.1 Non-Maximal Recursion Levels . 35
4.4.2 Running Times . 38

5 Conclusion 40
5.1 Future Work . 40

A Appendix 41

Bibliography 47

ix

List of Figures

1.1 Example of an Ω0-expression . 5
1.2 Natural Interval Extension Tree of Example 1.17 7

4.1 Speedup 𝜎 (ℓ) of E𝐿′3,ℓ (left) and E𝐻 ′4,ℓ (right) . 37
4.2 Speedup of 𝐸𝐻 ′4 over 𝐸𝐿′3 with different polynomials and degrees 38

x

List of Tables

4.1 Size of the Eval Subdivision Tree . 36
4.2 Average Running Time of Eval with 1024-bit Floating Point Arithmetic in Seconds. 39
4.3 Average Running Time of Eval with Multi-Precision Rational Arithmetic in Sec-

onds. 39

xi

1 | Introduction

Suppose we are given a function 𝑓 : X → Y, where X,Y are sets, as well as a subset 𝑋 ⊆ X. We
are interested in an algorithm that, given any such 𝑓 and 𝑋 , will output the image of 𝑋 under 𝑓 ,
i.e. we wish to compute 𝑌 B 𝑓 (𝑋) = {𝑦 ∈ Y | ∃𝑥 ∈ 𝑋, 𝑓 (𝑥) = 𝑦}. If 𝑋 is a finite set, then this
problem becomes trivial. If𝑋 is at least countably infinite, then this problem becomes intractable.
In this thesis, we focus on a tractable and applicable relaxation of the problem.

In particular, let X = R𝑛 for some 𝑛 ≥ 1, Y = R and suppose that 𝑓 : R𝑛 → R is smooth, i.e.
𝑓 ∈ 𝐶∞(R𝑛;R), where 𝐶∞(R𝑛;R) is the class of functions with domain R𝑛 and codomain R and
has continuous derivatives of any order. Though this is a stronger-than-needed assumption, it
will simplify our analysis later on significantly. Furthermore, assume the subsets 𝑋 ⊆ R𝑛 belong
to the set of boxes in R𝑛 denoted as R𝑛 B {[𝑎1, 𝑏1] × . . . × [𝑎𝑛, 𝑏𝑛] | 𝑎𝑖 ≤ 𝑏𝑖 ∈ R, 1 ≤ 𝑖 ≤ 𝑛}.
Moreover, for any connected subset D ⊆ R𝑛 , we can denote the set of all intervals (or interval
boxes) over D as D. Even now, we can still come up with functions that, under arbitrary
interval inputs, have images that are intractable for modern computers to compute exactly. For
example, take 𝑓 (𝑥) = 𝑒𝑥 sin𝑥 and 𝑋 = [

√
2, 𝜋
√
2].

Now, we change the objective of the problem from computing the exact range 𝑌 = 𝑓 (𝑋) to
finding a tight approximation 𝑌̃ ⊇ 𝑌 , preferably with an error bound that we can specify a priori.
This notion of an error bound will be defined in 1.2.

Finally, we wish to compute the approximation such that it is ‘exact’ (or ‘certified’), where the
output of our algorithm must contain the ground truth up to rounding and computational errors.
This is because modern computer architectures represent real numbers as either a floating point
representation or a rational representation. In either case, it is infeasible to represent numbers
such as

√
2 exactly. Consider 𝑓 (𝑥) = sin𝑥 and 𝑋 = [0, 1], while we can reason abstractly that

𝑓 (𝑋) = [0, sin 1], computing sin 1 and storing it in a computer exactly is not feasible. Most
computers would approximate the value using, for example, a Taylor approximation for sin𝑥 .
However, the truncated Taylor series for sin𝑥 may be an underestimate if we use an even number
of terms, and the resulting output from the computer will not contain the true range.

Out of the many popular methods that remedies these issues that lie in the heart of numerical
computing, a popular candidate is to extend our notion of arithmetic to intervals.

1

1.1 Motivating Interval Arithmetic
To sufficiently motivate our discussion for 1.2.1, let us consider a specific problem. We wish to
compute a person’s body mass index (BMI) under uncertainty about the person’s body weight
and determine whether their body mass index falls under the category of normal, underweight,
or overweight, represented by (18.5, 25), (−∞, 18.5], and [25,∞), respectively. Here, 𝑓 (𝑚,ℎ) =
𝑚/ℎ2.

If a person who is 1.80m tall steps on the scale with known uncertainty ±0.5kg and the scale
reads 80kg, it indicates the person has a true weight in the interval [79.5, 80.5]. It is, of course,
implausible that this person weighs exactly 80kg. Hence, if we carry out the BMI calculation and
get 24.69, we cannot be certain of this number. Alternatively, we can carry out the calculation
using the uncertainty interval and get [24.54, 24.85]. Now, taking in all of the uncertainties into
account, we can ‘certify’ this person is of normal weight.

This is a simple example, so we want to consider appropriate generalizations of this motivat-
ing idea. In the following section, we will build upon this idea and introduce primitive tools in
the field of interval arithmetic and range functions. Afterwards in 2, we will explore frameworks
and contemporary papers that we will either build upon or rely on for derivations of important
properties.

1.2 Preliminaries
I will first introduce basic arithmetic operations on intervals and some of their idiosyncrasies.
Afterwards, we will consider extending functions of the form 𝑓 : R𝑛 → R to 𝑓 : R𝑛 → R.
We will encounter some problems that will eventually need us to define the notion of range
functions and box forms.

1.2.1 Interval Arithmetic
Suppose that we are given two intervals [𝑎, 𝑏], [𝛼, 𝛽] ∈ R and a scalar 𝜆 ∈ R, then we have the
following definitions for interval arithmetic in R, which can easily be extended to boxes in R𝑛

via component-wise operations (i.e. viewing R𝑛 as an 𝑛-dimensional vector over R):

• Magnitude:

| [𝑎, 𝑏] | = max{𝑎, 𝑏} (1.1)

• Width:

𝑤 ([𝑎, 𝑏]) = 𝑏 − 𝑎 (1.2)

• Radius:

𝑟 ([𝑎, 𝑏]) = (𝑏 − 𝑎)/2 (1.3)

2

• Midpoint:

𝑚([𝑎, 𝑏]) = (𝑎 + 𝑏)/2 (1.4)

• Hausdorff Distance:

𝑑𝐻 ([𝑎, 𝑏], [𝛼, 𝛽]) = max{|𝑎 − 𝛼 |, |𝑏 − 𝛽 |} (1.5)

• Scalar Addition:

𝜆 + [𝑎, 𝑏] = [𝑎 + 𝜆,𝑏 + 𝜆] (1.6)

• Addition:

[𝑎, 𝑏] + [𝛼, 𝛽] = [𝑎 + 𝛼,𝑏 + 𝛽] (1.7)

• Subtraction:

[𝑎, 𝑏] − [𝛼, 𝛽] = [𝑎 − 𝛽, 𝑏 − 𝛼] (1.8)

• Scalar Multiplication:

𝜆[𝑎, 𝑏] =
{
[𝜆𝑎, 𝜆𝑏] if 𝜆 ≥ 0
[𝜆𝑏, 𝜆𝑎] if 𝜆 < 0

(1.9)

• Multiplication:

[𝑎, 𝑏] × [𝛼, 𝛽] = [min 𝑆,max 𝑆], 𝑆 B {𝑎𝛼, 𝑎𝛽, 𝑏𝛼, 𝑏𝛽} (1.10)

• (Multiplicative) Inversion:

1
[𝑎, 𝑏] =


[1
𝑏
, 1
𝑎
] if 0 ∉ [𝑎, 𝑏]

(−∞, 1
𝑎
] ∪ [1

𝑏
, +∞) if 0 ∈ [𝑎, 𝑏]

[1
𝑏
, +∞) if 𝑎 = 0
(−∞, 1

𝑎
] if 𝑏 = 0

(1.11)

Above, the Hausdorff distance will be our notion of an ‘error bound’ when discussing intervals,
which also forms a complete metric topology over R𝑛 1.

A useful representation for intervals is that they can be decomposed into a centered interval
(about 0) with an additive component.

1For a more detailed and mathematical development of the interval system with applications to other problems
such as deriving global error bounds for differential equations, computer-assisted proofs, and more, please refer to
[Moore et al. 2009], [Moore 1979], [Alefeld et al. 2012].

3

Lemma 1.1. For any 𝐼 = [𝑎, 𝑏] ∈ R, 𝐼 =𝑚(𝐼) + 1
2𝑤 (𝐼) [−1, 1].

By inspection, we see that addition and multiplication are commutative. However, there are
peculiarities with interval arithmetic that leads to information loss under multiplication and in-
version that we want to mitigate. The most notable example is that interval multiplication is not
distributive over addition.

Lemma 1.2 (‘Sub-distributivity’ of Interval Multiplication over Addition). For all 𝑎, 𝑏, 𝑐 ∈ R,

𝑎 · (𝑏 + 𝑐) ⊆ 𝑎 · 𝑏 + 𝑎 · 𝑐

This is best illustrated by the following example.

Example 1.3. Suppose we wish to compute [1, 2] · ([1, 2] − [1, 2]), then

[1, 2] · ([1, 2] − [1, 2]) = [1, 2] · [−1, 1] = [−2, 2], but
[1, 2] · [1, 2] − [1, 2] · [1, 2] = [1, 4] − [1, 4] = [−3, 3]

This implies that we must be careful about our order of operations in order to minimize in-
formation lost. With these primitive tools, we are already able to compute exact ranges for affine
functions, say 𝑓 (𝒙) = 𝑎 · 𝒙 + 𝑏. In fact, we are able to find the ranges of any monotonic function
by simply outputting the values of the function at the endpoints of the interval.

Example 1.4. We can naturally extend the exponential function to intervals.

exp ([𝑎, 𝑏]) B [exp𝑎, exp𝑏]

Furthermore, we can calculate the range for functions that can be decomposed into piece-wise
monotonic functions by also taking the ‘critical points’ into consideration.

Example 1.5. Let 𝑓 (𝑥) = sin𝑥 , and suppose we wish to compute sin [0, 𝜋]. On this interval,
sin𝑥 can be decomposed into two piece-wise monotonic functions, one defined on [0, 𝜋/2] and
the other defined on (𝜋/2, 𝜋]. In addition to computing sin𝑥 at its endpoints, we must also
consider the critical point 𝑥 = 𝜋/2.

sin [0, 𝜋] = [min 𝑆,max 𝑆], 𝑆 = {sin 0, sin𝜋/2, sin𝜋} = {0, 1}
∴ sin [0, 𝜋] = [0, 1]

Lemma 1.6. Let 𝑓 : R𝑛 → R be a piece-wise monotonic function, then 𝑓 (𝐼) can be theoretically
computed exactly ∀𝐼 ∈ R𝑛 .

Proof. Let 𝐼 = [𝑎, 𝑏]. We can generalize the procedure in Example 1.5: For each ‘critical point’ of
the function in 𝐼 (i.e. when the function changes direction), evaluate the function at that point,
then evaluate 𝑓 (𝑎) and 𝑓 (𝑏). Then the minima and maxima of this set will be exactly 𝑓 (𝐼). □

We can now combine this knowledge with our prior knowledge of interval arithmetic to com-
pute approximate ranges of a wider class of functions. We must accept that our range will be a
superset of the true range due to the sub-distributivity of interval multiplication. Let us first
define the notion of ‘expressions’.

4

Definition 1.7. A partial function 𝑓 : X → Y is a function from some subset of 𝑋 ⊆ X to Y,
i.e. some elements in the domain are undefined.

If 𝑆 = X, then 𝑓 is a function. A common example of a partial function is division over the
real numbers. ÷ : R2 → R, ÷(𝑎, 𝑏) = 𝑎 ÷ 𝑏 is defined for all 2-tuples except for the subset
{(𝑎, 0) | 𝑎 ∈ R}.

Definition 1.8. An expression class Ω is a set of algebraic operations such that each 𝜔 ∈ Ω is an
𝑛-ary operation defined by a partial function 𝑓𝜔 : Z𝑛 → C.

Some of the most common expression classes are:

• Ω0 = {±,×},

• Ω1 = {±,×,÷}

• Ω2 = {±,×,÷, 𝑛
√·}

• Ω3 = {±,×,÷, 𝑛
√·, Root(·)}

Where Root(·) : Z𝑛 → C takes in a sequence of integers that represents the coefficients of the
polynomial in Z[𝑥] and outputs the largest root of the polynomial [Li and Yap 2001]. In the case
where we have conjugate complex roots of the same norm, we choose the root with the positive
imaginary component.

Definition 1.9. An expression over Ω (also known as a Ω-expression) is a tree such that each
non-leaf node is labeled with some 𝑛-ary operation 𝜔 ∈ Ω and has 𝑛 incoming child nodes. The
leaf nodes are labeled with integers.

Figure 1.1: Example of an Ω0-expression

×

+

2 5

−

10 7

Given any Ω1-expression, we can extend the expression tree to take in intervals in the leaf
nodes. This is called the natural interval extension of an expression.

Furthermore, we can also allow piece-wise monotonic functions to be included as nodes, i.e.
these functions can act as𝑛-ary operations. Using this and a composition of piece-wisemonotonic
functions, we can compute a larger class of functions.

5

1.2.2 Range Functions
We first introduce the two properties that any range function must have.

Definition 1.10. A function f : R𝑛 → R is an interval extension of 𝑓 : R𝑛 → R if for any
𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 and its corresponding degenerate interval 𝑋 B ([𝑥1, 𝑥1], . . . , [𝑥𝑛, 𝑥𝑛]), we
have f (𝑋) = 𝑓 (𝑥).

Definition 1.11. A function f : R𝑛 → R is inclusion isotonic if ∀𝐼 ⊆ 𝐽 ∈ R𝑛, f (𝐼) ⊆ f (𝐽).

Now, a range function for a function is simply a function over R𝑛 × R that is both an
interval extension and is inclusion isotonic.

Definition 1.12. Let 𝑓 : R𝑛 → R be any function, a range function for 𝑓 is a function 𝑓 : R𝑛 →
R such that for all 𝐼 ∈ R, 𝑓 (𝐼) = {𝑓 (𝑥) | 𝑥 ∈ 𝐼 } ⊆ 𝑓 (𝐼). If 𝑓 (𝐼) = 𝑓 (𝐼) for all 𝐼 ∈ R, then
𝑓 is an exact range function.

Fixing the function 𝑓 , we can also define a partial ordering on the class of range functions for
𝑓 [Hormann et al. 2021].

Definition 1.13. Let 1𝑓 , 2𝑓 be two ranges functions for 𝑓 . Then 1𝑓 ⪯ 2𝑓 if ∀𝐼 ∈ R,
1𝑓 (𝐼) ⊆ 2𝑓 (𝐼). That is, 1𝑓 is as tight as 2𝑓 .

Finally, we can define the natural interval extension of a function defined by an expression,
which is a very important concept that we will be utilizing.

Definition 1.14. Let 𝑓 : R𝑛 → R be a function that can be represented by an expression, then
the natural interval extension f : R𝑛 → R is defined by that expression, by replacing inputs
{𝑥1, . . . , 𝑥𝑛} and arithmetic operations by intervals {𝐼1, . . . , 𝐼𝑛} and interval operations, respec-
tively.

An important subclass of functions that have exact natural interval extensions are those
whose variables only appear once in the expression.

Theorem 1.15. Let 𝑓 : R𝑛 → R be a function that can be represented by an expression, if the
variables {𝑥1, . . . , 𝑥𝑛} only appear once in the expression, then its natural interval extension f is
exact. i.e. f (𝐼) = 𝑓 (𝐼), ∀𝐼 ∈ R𝑛 .

Proof. Of course, we have 𝑓 (𝐼) ⊆ f (𝐼) by the fact that natural interval extensions are range
functions. For the other inclusion, we argue inductively over the tree expression, starting from
the leaf nodes, using the exactness (or sub-distributivity) of interval arithmetic. □

We can extend this class if we recall our ability to find exact ranges for piece-wise monotonic
functions.

Lemma 1.16. Let Ω B Ω1 ∪ PM(R𝑛;R), where PM(R𝑛;R) is the set of all piece-wise monotonic
functions 𝑓 : R𝑛 → R. Then the set of all functions that can be presented by a subset of Ω-expressions
on each input has a range function.

6

Proof. Let 𝑓 be a function as described above and let 𝐼 ∈ R be an input. View 𝑓 (𝐼) as an expres-
sion tree. For each inner node, if the label is a piece-wise monotonic function, use Lemma 1.6,
otherwise use interval arithmetic. Evaluating bottom-up, we arrive at an interval that surely
contains 𝑓 (𝐼). □

Example 1.17. Approximate the range of 𝑓 ([0, 𝜋]), where 𝑓 (𝑥) = 5 · (𝑥 + sin𝑥).
We know that sin [0, 𝜋] = [0, 1], and now we can extend our expression tree to approximate the
range.

𝑓 ([0, 𝜋]) ⊆ [0, 5 + 5𝜋]
𝑓 (𝑥) is non-decreasing, so we can find that the precise range is [0, 5𝜋] ⊂ [0, 5 + 5𝜋].

Figure 1.2: Natural Interval Extension Tree of Example 1.17

×

5 +

sin (·)

[0, 1]

[0, 1]

However, in practice, we do not know how a general function will decompose into mono-
tonic pieces. This is problematic as our algorithm does not know a priori which function it needs
to compute. Additionally, if interval division is needed at any point in the expression, then we
may encounter intervals involving infinity, which destroys our approximation to the true range.
Finally, computational errors arise in real-world computations, meaning that exact ranges of the
above functions may not be exact when computing them using floating point or rational arith-
metic.

With these limitations in mind, we want to forego the idea of computing intervals exactly,
but still wish to compute approximate ranges for functions that are ‘good enough’ to use in
applications where a guaranteed range is crucial.

1.2.3 Box Forms
Let us first develop definitions that express what we desire in range functions.

Definition 1.18. Let 𝑓 : R𝑛 → R be any real-valued function and 𝑓 : R𝑛 → R be a range
function for 𝑓 . Then 𝑓 has order 𝑘 convergence with respect to an interval box I ⊆ R𝑛 if there
exists 𝐶 ∈ R such that for all 𝐼 ⊆ I, we have 𝑑𝐻 (𝑓 (𝐼), 𝑓 (𝐼)) ≤ 𝐶𝑤 (𝐼)𝑘 . If 𝑘 ≥ 1, then 𝑓 is
convergent on I.

From here on in, we assume that when we say 𝑓 is convergent, it means that the range
function is convergent on the entire domain of 𝑓 . Below is an important property of convergent
range functions.

7

Lemma 1.19. Let 𝑓 be a real-valued function and let 𝑓 be a convergent range function for 𝑓 . Then
for any sequence of intervals (𝐼𝑖)𝑖≥1 that converges monotonically to a fixed point 𝑝 ∈ 𝐼1, we have

lim
𝑖→∞

𝑓 (𝐼𝑖) = 𝑓 (𝑝)

Proof. Since 𝑓 is convergent, we must have 𝑑𝐻 (𝑓 (𝐼), 𝑓 (𝐼)) ≤ 𝐶𝑤 (𝐼) for any 𝐼 . Viewing 𝑝 as
an interval 𝐼 = [𝑝, 𝑝], we have

𝑑𝐻 (𝑓 (𝐼), 𝑓 (𝐼)) = 𝑑𝐻 (lim
𝑖→∞

𝑓 (𝐼𝑖), 𝑓 (𝑝)) ≤ 𝐶𝑤 (𝐼) = 0

Hence
| lim
𝑖→∞

𝑓 (𝐼𝑖) − 𝑓 (𝑝) | = 0 =⇒ lim
𝑖→∞

𝑓 (𝐼𝑖) = 𝑓 (𝑝)

. □

Definition 1.20. Let 𝑓 : R𝑛 → R be a real-valued function, a range function 𝑓 : R𝑛 → R is
a box form of 𝑓 if it is

(1) Conservative: 𝑓 (𝐼) ⊇ 𝑓 (𝐼) for all 𝐼 .

(2) Convergent: 𝑓 is convergent.

For any function that is 𝑘 times differentiable, it can exhibit a Taylor interval extension that
is also a box form for 𝑓 via the use of Taylor’s theorem followed by a natural extension of the
Taylor form.

Lemma 1.21. Let 𝑓 : R𝑛 → R be 𝑘 times differentiable in a box 𝐼 ∈ R𝑛 , where 𝑘 ≥ 1,then 𝑓 has a
range function.

Proof. Using Taylor’s theorem, we have for every 𝑥 ∈ 𝐼

𝑓 (𝑥) =
𝑘−1∑︁
𝑖=0

1
𝑖!
𝐷𝑖 𝑓 (𝑥) · (𝑥 − 𝑥)𝑖 + 1

(𝑘)!𝐷
𝑘 𝑓 (𝜉) (𝑥 − 𝑥)𝑘

for any 𝑥 ∈ 𝐼 , say𝑚(𝐼), and some 𝜉 ∈ 𝐼 . We now replace the above Taylor expression with its
natural interval extension, i.e. 𝑥 ← 𝐼 , 𝜉 ← 𝐼 . □

This idea of a Taylor interval extension will be very important for our later discussion and
results. We now have developed sufficient material in order to review contemporary literature in
this topic.

8

2 | Review of Literature

In this section, we aim to first explore important or contemporary literature that has contributed
significantly to deriving frameworks and algorithms that provide accurate and fast-converging
box forms for a wide class of functions. For simplicity, let us assume that we are working exclu-
sively with functions of the form 𝑓 : R→ R.

In Ramon E. Moore’s foundational textbook [Moore et al. 2009], we see important first-order
and second-order range functions for real-valued functions satisfying Lipschitz and/or differen-
tiable assumptions.

Definition 2.1. A function 𝑓 : R→ R is said to be 𝐿-Lipschitz, where 𝐿 ≥ 0, if

∀𝑥,𝑦 ∈ R, |𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿 · |𝑥 − 𝑦 |

Definition 2.2. An interval extension f : R→ R for 𝑓 : R→ R is said to be 𝐿-Lipschitz over
an interval I ∈ R if

𝑤 (f (𝐼)) ≤ 𝐿 ·𝑤 (𝐼), ∀𝐼 ⊆ I

We can now begin with some theorems about box forms with linear or quadratic convergence
as discussed in [Moore et al. 2009].

Theorem 2.3. If 𝑓 : R → R is 𝐿-Lipschitz, then its natural interval extension is a box form with
convergence order ≥ 1.

Proof. Refer to [Moore et al. 2009]. □

Theorem 2.4. If 𝑓 : R→ R is differentiable such that its derivative 𝑓 ′ is 𝐿-Lipschitz in the interval
I ∈ R, then the mean value form

f (𝐼 ;𝑥) B 𝑓 (𝑥) + 𝑓 ′(𝐼) · (𝐼 − 𝑥)

for any 𝑥 ∈ I and 𝐼 ⊆ I converges with order 2.

Proof. Refer to [Moore et al. 2009]. □

Up until [Cornelius and Lohner 1984], many articles were published that described range
functions with quadratic convergence, most used some specific instance of centered form expres-
sions

f (𝐼) = 𝑓 (𝑥) + 𝐻 (𝐼 , 𝑥) · (𝐼 − 𝑥) (2.1)

9

where 𝐻 is 𝐿-Lipschitz in its first argument. Of course, the mean value form in Theorem 2.4 is a
special case of this generalized center form expression.

One might wonder, we had discussed Taylor interval extensions in the previous chapter. Is
it feasible to use higher order Taylor terms in a generalized ‘centered form’ to achieve not only
higher than quadratic, but box forms of any order of convergence (up to differentiability)?

Although they appear to exhibit higher order convergence, Neumaier’s paper [Neumaier
2003] provides a counterexample.

Example 2.5. Consider the function 𝑓 (𝑥) = −𝑥2 over the interval [0.1ℎ, 1.1ℎ] for some ℎ > 0.
Then for a Taylor centered form of any order ≥ 1, the linear term will bound convergence and
lead to a range overestimate of order O(ℎ2).

2.1 Cornelius & Lohner Form
In [Cornelius and Lohner 1984], H. Cornelius and R. Lohner introduced a framework that would
allow for higher than quadratic orders of convergence.

Suppose 𝑓 : R→ R can be represented in the form

𝑓 (𝑥) = 𝑔(𝑥) + 𝑟 (𝑥), 𝑔, 𝑟 continuous. (2.2)

Also suppose that for any I ∈ R, there exists a range function 𝑅 : I → R such that

𝑟 (𝐼) ⊆ 𝑅(𝐼), ∀𝐼 ∈ I .

The function 𝑔(𝑥) can be interpreted as an approximation of 𝑓 (𝑥) such that 𝑔(𝑥) is exactly com-
putable by a Turing machine (or any modern computer). The function 𝑟 (𝑥) is often regarded as
the remainder term, and therefore the range function 𝑅(𝐼) is a range estimation of this remain-
der term.

Now, with the above assumptions, we can compose a range function for 𝑓 (𝑥)

𝑓 (𝐼) = 𝑔(𝐼) + 𝑅(𝐼) (2.3)

We can intuitively see how this range function of 𝑓 (·) has an accuracy that can be bounded by
the remainder term alone.

Theorem 2.6. Let 𝑓 : R → R be continuous and let 𝑓 : R → R be a range function as
described in 2.3. Then we have for all 𝐼 ∈ R,

(a) 𝑓 (𝐼) ⊆ 𝑓 (𝐼)

(b) 𝑑𝐻 (𝑓 (𝐼), 𝑓 (𝐼)) ≤ 𝑤 (𝑅(𝐼))

Proof. (a) is easily shown using our assumptions on 𝑔, 𝑟, 𝑅.
To prove (b), we notice that since 𝑓 (·) is continuous onR, it is also continuous on the compact

interval 𝐼 . Hence, 𝑓 (·) attains a minimum and maximum on this compact interval, denoted 𝑥, 𝑥 ∈
𝐼 . This, of course, implies that 𝑓 (𝐼) = [𝑥, 𝑥].

10

Since𝑔(·) is also continuous on 𝐼 , it must also attain a minimum andmaximum𝑦,𝑦 ∈ 𝐼 . Hence
𝑔(𝐼) = [𝑥, 𝑥].

Now suppose 𝑅(𝐼) = [𝑟, 𝑟], and we have

𝑑𝐻 (𝑓 (𝐼), 𝑓 (𝐼)) = 𝑑𝐻 ([𝑓 (𝑥), 𝑓 (𝑥)], [𝑔(𝑦), 𝑔(𝑦)] + [𝑟, 𝑟])
= max{|𝑓 (𝑥) − 𝑔(𝑦) − 𝑟 |, |𝑓 (𝑥) − 𝑔(𝑦) − 𝑟 |}

In the first argument of max{·}, we have

|𝑓 (𝑥) − 𝑔(𝑦) − 𝑟 | = 𝑓 (𝑥) − 𝑔(𝑦) − 𝑟
≤ 𝑓 (𝑦) − 𝑔(𝑦) − 𝑟
≤ (𝑔(𝑦) + 𝑟) − 𝑔(𝑦) − 𝑟
= 𝑟 − 𝑟 = 𝑤 (𝑅(𝐼))

In the second argument, we have

|𝑓 (𝑥) − 𝑔(𝑦) − 𝑟 | = 𝑔(𝑦) + 𝑟 − 𝑓 (𝑥)
≤ 𝑔(𝑦) + 𝑟 − 𝑓 (𝑦)
≤ 𝑔(𝑦) + 𝑟 − (𝑔(𝑦) + 𝑟)
= 𝑟 − 𝑟 = 𝑤 (𝑅(𝐼))

□

Since we require the range of 𝑔(·) to be exactly computable, we are restricted to functions
that have expressions in Ω. A practical restriction, however, is that we also want the range of
𝑔(·) to be efficiently computable.

Another consideration is that the remainder form 𝑅 must also be efficiently computable, and
since we can rewrite 2.3 as

𝑟 (𝑥) = 𝑓 (𝑥) − 𝑔(𝑥),
we can choose 𝑔(𝑥) such that 𝑟 (𝑥) can be written in a ‘nice’ form relative to its range function.
With exactness and efficiency requirements, we have incentive to choose 𝑔 to be a Hermite in-
terpolant of 𝑓 (of which both Lagrange interpolation and Taylor expansions fall as a special case
of Hermite interpolation). Of course, this would also require 𝑓 (𝑥) being differentiable enough
times such that 𝑔(𝑥) can be constructed and 𝑟 (𝑥) is in a sufficiently ‘nice’ form.

That is, fixing 𝐼 ∈ R, suppose that 𝑓 (𝑥) is 𝑘-times continuously differentiable. Then, for any
𝑥0, . . . , 𝑥ℓ ∈ 𝐼 distinct and 𝑝0, . . . , 𝑝ℓ ∈ Z+ such that

∑ℓ
𝑖=0 𝑝𝑖 = 𝑘 , we define 𝑔(𝑥) to be the unique

Hermite interpolant of 𝑓 (𝑥) with degree 𝑘 − 1 where

𝑔(𝑗) (𝑥𝑖) = 𝑓 (𝑗) (𝑥𝑖), 𝑗 = 0, . . . , 𝑝𝑖 − 1, 𝑖 = 0, . . . , ℓ, (2.4)

we can express the remainder function as

𝑟 (𝑥) = 1
𝑘!
𝑓 (𝑘) (𝜉)

ℓ∏
𝑖=0
(𝑥 − 𝑥𝑖)𝑝𝑖 , (2.5)

11

for some 𝜉 ∈ 𝐼 . This form suggests the natural interval extension

𝑅(𝐼) B 1
𝑘!
𝑓 (𝑘) (𝐼)

ℓ∏
𝑖=0
(𝐼 − 𝑥𝑖)𝑝𝑖 . (2.6)

We see that this remainder form has order 𝑘 since 𝑓 (𝑥) is decomposed into the Cornelius-
Lohner form and we have

𝑤 (𝑅(𝐼)) ≤ 2| 𝑅(𝐼) |

≤
(
2
| 𝑓 (𝑘) (𝐼) |

𝑘!

)
𝑤 (𝐼)𝑘 , |𝐼 − 𝑥𝑖 | ≤ 𝑤 (𝐼).

Furthermore, we can construct a new Cornelius-Lohner form by defining

𝑔(𝑥) B 𝑔(𝑥) + 𝑦

𝑘!

ℓ∏
𝑖=0
(𝑥 − 𝑥𝑖)𝑝𝑖 , 𝑦 ∈ 𝑓 (𝑘) (𝐼),

which induces a remainder form of

𝑅𝑔 (𝐼) =
1
𝑘!
(𝑓 (𝑘) (𝐼) − 𝑦)

ℓ∏
𝑖=0
(𝐼 − 𝑥𝑖)𝑝𝑖 . (2.7)

If, in addition, 𝑓 (𝑘) is 𝐿-Lipschitz, then we have an extra order of convergence as

| 𝑓 (𝑘) (𝐼) − 𝑦 | ≤ 𝑤 (𝑓 (𝑘) (𝐼))
≤ 𝐶′𝑤 (𝐼) .

The difference between 𝑔(𝑥) and 𝑔(𝑥) is that 𝑔(𝑘) ≡ 0 while 𝑔(𝑘) ≡ 𝑦. Although 𝑔 has a higher
degree compared to 𝑔, which may lead to computational inefficiencies, there is one trick that will
be exploited in our discussion of [Hormann et al. 2021] that leads to an overall more efficient
algorithm.

2.1.1 Extensions to R𝑛

In [Cornelius and Lohner 1984], they also discuss extensions to when 𝑓 (𝑥) is a real function with
vector inputs, i.e. 𝑓 : R𝑛 → R. The theorems do generalize to such functions, provided we use
the multivariate versions of Taylor’s theorem, Lipschitz continuity, and others.

However, taking practical computations into consideration, it is difficult to find a function 𝑔

that is interpolating and is easy to compute the exact range over. The study of practical Hermite
interpolation methods in dimensions ≥ 2 is still an active field of research today. While possible
in principle, the practical computation is extremely inefficient.

12

2.2 K. Hormann, L. Kania, and C. Yap 2021
Whereas [Cornelius and Lohner 1984] focused more on finding appropriate exact functions 𝑔(𝑥),
[Hormann et al. 2021] focuses more on the remainder term 𝑟 (𝑥) and its box forms. In theory,
the width of the box form 𝑓 is strictly controlled by the box form 𝑅. It also happens that our
choice of remainder term relative to its levels of recursion in the various forms that we will discuss
shortly are of significance for practical computing.

There are two main theoretical ideas that will be applied to the remainder term, along with
a number of algorithmic realizations that outperformed state-of-the-art box forms in the context
of real root isolation.

1. Expressing the remainder term in 2.5 in centered form, and

2. Approximating the 𝑓 (𝑘) (𝐼) term in 2.6 by rewriting it in Cornelius-Lohner form and repeat-
ing recursively.

2.2.1 Classical Taylor Forms
The classical (and, at the time, state-of-the-art) approach is to set ℓ = 0 and 𝑝0 = 𝑘 = 2 for the
Hermite interpolant 2.4 and set the interpolating data 𝑥0 B 𝑚 = 𝑚(𝐼). If we end up using the
ideas presented in [Cornelius and Lohner 1984], we end up with the minimal Taylor form

˜𝑇2 𝑓 (𝐼) B 𝑔(𝐼) + 𝑅𝑔 (𝐼), (2.8)

where
𝑔(𝐼) = 𝑓 (𝑚) + 𝑓 ′(𝑚) (𝐼 −𝑚), 𝑅𝑔 (𝐼) =

1
2

𝑓 (2) (𝐼) (𝐼 −𝑚)2

and 𝑓 (2) (𝐼) is the natural interval extension of 𝑓 (2) (𝑥).
The above expression converges, under certain assumptions about 𝑓 (·), with quadratic order.

In [Hormann et al. 2021], however, the authors argue that the remainder can be further expanded,
given that we have an 𝑛-times differentiable function 𝑓 (𝑥), allowing us to further expand the
remainder part as

𝑛−1∑︁
𝑖=2

1
𝑖!
𝑓 (𝑖) (𝑚) (𝑥 −𝑚)𝑖 + 1

𝑛!
𝑓 (𝑛) (𝜉) (𝑥 −𝑚)𝑛

for some 𝜉 = 𝜉𝑥 ∈ 𝐼 . For the last term, we can replace 𝑓 (𝑛) (𝜉) with its natural interval extension
|𝑓 (𝑛) (𝐼) | in order to properly enclose the range as we do not have information on what 𝜉 will be.

This, in turn, gives us the classical Taylor form

𝑇
2,𝑛 𝑓 (𝐼) B 𝑔(𝐼) + 𝑅𝑔 (𝐼), (2.9)

where

𝑔(𝐼) = 𝑓 (𝑚) + 𝑓 ′(𝑚) (𝐼 −𝑚), 𝑅𝑔 (𝐼) =
𝑛−1∑︁
𝑖=2

1
𝑖!
𝑓 (𝑖) (𝑚) (𝐼 −𝑚)𝑖 + 1

𝑛!
| 𝑓 (𝑛) (𝐼) | (𝐼 −𝑚)𝑛 .

13

One might ask, this Taylor form compared to the previous minimal Taylor form 2.8 both have
quadratic convergence, in addition to having more terms in the remainder to compute. Notably,
the coefficients in 2.9 requiresO(𝑛 log𝑛) arithmetic operations to computewhile 2.8 only requires
O(𝑛) arithmetic operations, so what do we gain?

It turns out that the higher order terms in the remainder of 2.8 converge with a higher ‘order’
(which we will revisit in 3 and aptly call it recursion levels), and will empirically result in a smaller
subdivision tree and a faster runtime in the context of real root isolation.

2.2.2 Taylor Forms with Higher Orders of Convergence
As mentioned in [Cornelius and Lohner 1984], we need not be restrained by a linear Taylor
approximation for the exact part 𝑔(𝑥). We can use higher order polynomials (whose range can
be computed exactly) for the exact part in order to achieve higher-than-quadratic convergence.
That is, to achieve an order 𝑘 convergent Taylor form, we can replace the exact part by an (𝑘 − 1)
Taylor polynomial for 𝑓 about𝑚:

𝑔(𝑥) =
𝑘−1∑︁
𝑖=0

1
𝑖!
𝑓 (𝑖) (𝑚) (𝑥 −𝑚)𝑖 .

Again, if we simply follow the method outlined in [Cornelius and Lohner 1984], we would
choose the remainder function to be

1
𝑘!
𝑓 (𝑘) (𝜉) (𝑥 −𝑚)𝑘 ,

which, via a natural interval extension, becomes

1
𝑘!
| 𝑓 (𝑘) (𝐼) | (𝐼 −𝑚)𝑘 .

This leads to a minimal higher order Taylor form

˜𝑇
𝑘 𝑓 (𝐼) B 𝑔(𝐼) + 𝑅𝑔 (𝐼),

where

𝑔(𝑥) =
𝑘−1∑︁
𝑖=0

1
𝑖!
𝑓 (𝑖) (𝑚) (𝑥 −𝑚)𝑖, 𝑅𝑔 (𝐼) =

1
𝑘!
| 𝑓 (𝑘) (𝐼) | (𝐼 −𝑚)𝑘 .

Of course, if we use the same methods as detailed in 2.2.1 and assume existence of sufficiently
many derivatives of 𝑓 (𝑥), we can continue the Taylor expansion of the remainder term up to
𝑛 − 1. This gives us the generalized Taylor form of convergence order 𝑘 and recursion level 𝑛:

𝑇
𝑘,𝑛

𝑓 (𝐼) B 𝑔(𝐼) + 𝑅𝑔 (𝐼), (2.10)

where

𝑔(𝑥) =
𝑘−1∑︁
𝑖=0

1
𝑖!
𝑓 (𝑖) (𝑚) (𝑥 −𝑚)𝑖

14

and

𝑅𝑔 (𝐼) =
𝑛−1∑︁
𝑖=𝑘

1
𝑖!
𝑓 (𝑖) (𝐼 −𝑚)𝑖 + 1

𝑛!
| 𝑓 (𝑛) (𝐼) | (𝐼 −𝑚)𝑛 .

If 𝑛 = 𝑘 , we get the minimal recursion level higher order Taylor form, and if 𝑛 = ∞, then we
get the maximal level recursion form. Achieving maximal level requires more strict constraints
on 𝑓 (𝑥), i.e. it must be analytic and 𝑟 (𝐼) must be sufficiently small to allow the power series to
converge. [Hormann et al. 2021] only deals with the minimal and maximal level cases. In our
novel approach in 3, however, we will also consider non-maximal levels of recursion in empirical
computation.

Additionally, in practice, we would want our exact part to be of degree ≤ 4 due to both the un-
solvability of quintic and higher order polynomials over the radicals as well as the computational
drawbacks of precisely computing the range of 𝑔(𝐼). Indeed, while 𝑘 = 3 (𝑔(𝑥) is quadratic) only
needs marginally more computational power to compute the exact range, the case when 𝑘 = 4
(𝑔(𝑥) is cubic) requires significantly more computational power which results in a trade-off be-
tween a theoretically higher order of convergence versus an empirical lower time of computation.

To compute the exact range of a quadratic polynomial over an interval 𝐼 = [𝑎, 𝑏], we only need
to consider three points: the endpoints of the interval 𝑎, 𝑏, and the critical point. If the critical
point does not lie in the interval, then we only need to compute the endpoints. Otherwise, we
compute the range by taking the extremum (or minimum) into account.

However, to compute the exact range of a cubic polynomial over the same interval, we would
require a significantly more sophisticated approach that would also take much longer to run.
Refer to Algorithm 1.

2.2.3 Recursive Interpolation Forms
Another way to formulate efficient range functions is to recursively use the Cornelius and Lohner
form. Suppose that ℎ0(𝑥) is a Hermite interpolant of 𝑓 (𝑥) with interpolation nodes {𝑥𝑖}0≤𝑖≤ℓ and
multiplicities {𝑝𝑖}0≤𝑖≤ℓ such that the degree of ℎ0(𝑥) is 𝑘 − 1 (i.e.

∑ℓ
𝑖=0 𝑝𝑖 = 𝑘), matching the form

in 2.4. We can then write the remainder in the form

𝑅ℎ0 (𝑥) =
1
𝑘!
𝜔 (𝑥) 𝑓 (𝑘) (𝜉), 𝜔 (𝑥) B

ℓ∏
𝑖=0
(𝑥 − 𝑥𝑖)𝑝𝑖

for some 𝜉 = 𝜉𝑥 ∈ 𝐼 . We also have that

|𝑅ℎ0 (𝐼) | ≤
1
𝑘!
Ω |𝑓 (𝑘) (𝐼) |.

Now, we can apply the same idea again, but to the remainder 𝑓 (𝑘) (·). We can define another
Hermite interpolant ℎ1(𝑥) for 𝑓 (𝑘) (𝑥) with the same interpolating nodes and multiplicities to
attain a remainder 𝑅ℎ1 that is one recursive lever deeper. We use the same bound above (|𝑅ℎ1 (𝐼) | ≤
Ω |𝑓 2𝑘 (𝐼) |) to get

|𝑓 (𝑘) (𝐼) | ≤ |ℎ1(𝐼) | + Ω |𝑓 (2𝑘) (𝐼) |.

15

Algorithm 1 Computing 𝑔(𝐼) = [𝐴, 𝐵] for the cubic polynomial 𝑔(𝑥) = ∑3
𝑖=0 𝑐𝑖 (𝑥 −𝑚)𝑖 .

1: 𝐴 := min{𝑔(𝑎), 𝑔(𝑏)}
2: 𝐵 := max{𝑔(𝑎), 𝑔(𝑏)}
3: Δ := 𝑐22 − 3𝑐1𝑐3
4: if Δ > 0 then
5: 𝐿 := sgn(𝑐3) (𝑐1 + 3𝑐3𝑟 2)
6: 𝑅 := 2|𝑐2 |𝑟
7: if 𝐿 > 𝑅 then
8: if |𝑐2 | < 3|𝑐3 |𝑟 then
9: 𝑥− :=𝑚 − (𝑐2 −

√
Δ)/(3𝑐3)

10: 𝑥+ :=𝑚 − (𝑐2 +
√
Δ)/(3𝑐3)

11: 𝐴 := min{𝐴,𝑔(𝑥−)}
12: 𝐵 := max{𝐵,𝑔(𝑥+)}
13: else if 𝐿 > −𝑅 then
14: if 𝑐2 > 0 then
15: 𝑥− :=𝑚 − (𝑐2 −

√
Δ)/(3𝑐3)

16: 𝐴 := 𝑔(𝑥−)
17: else if 𝑐2 < 0 then
18: 𝑥+ :=𝑚 − (𝑐2 +

√
Δ)/(3𝑐3)

19: 𝐵 := 𝑔(𝑥+)
20: return [𝐴, 𝐵]

We can repeat this procedure for up to any 𝑛 (assuming that 𝑓 (𝑥) is 𝑛𝑘-times differentiable) to
obtain Hermite interpolants ℎ𝑖 (𝑥), 1 ≤ 𝑖 ≤ 𝑛. This gives us the bound

|𝑅ℎ0 (𝐼) | ≤
𝑛−1∑︁
𝑗=1
|ℎ 𝑗 (𝐼) |Ω 𝑗 + Ω𝑛 | 𝑓 (𝑛𝑘) (𝐼) |.

Finally, combining this remainder bound with our exact Hermite interpolant ℎ0(𝑥) for 𝑓 (𝑥), we
get the recursive remainder form of order 𝑘 and recursion level 𝑛:

𝑅
𝑘,𝑛

𝑓 (𝐼) B ℎ0(𝐼) + (
𝑛−1∑︁
𝑗=1
|ℎ 𝑗 (𝐼) |Ω 𝑗 + Ω𝑛 | 𝑓 (𝑛𝑘) (𝐼) |). (2.11)

With the same reasoning as in 2.9. Although the number of terms we must calculate for the
remainder term increases, the higher order terms in the remainder gives us faster convergence
in practice. In the same light, we can also define a minimal and maximal variant, equivalent to
setting 𝑛 = 1 and 𝑛 = ∞, respectively.

2.2.4 Recursive Lagrange Forms with Cubic Convergence
An instantiation of 2.2.3 is to use Lagrange interpolant. We can set 𝑝𝑖 = 1∀𝑖 , choose the interpo-
lation nodes to be {𝑎,𝑚,𝑏}, where 𝐼 = [𝑎, 𝑏] and𝑚 =𝑚(𝐼), and let ℓ = 2. This gives us a quadratic

16

Lagrange interpolant for 𝑓 (𝑥) with cubic (𝑘 = 3) convergence.
At each recursion level 𝑗 = 0, 1, . . ., we have the following centered form Lagrange interpolant

ℎ 𝑗 (𝑥) B 𝑑 𝑗,0 + 𝑑 𝑗,1(𝑥 −𝑚) + 𝑑 𝑗,2(𝑥 −𝑚)2,

where,

𝑑 𝑗,0 = 𝑓 (3 𝑗) (𝑚)

𝑑 𝑗,1 =
𝑓 (3 𝑗) (𝑏) − 𝑓 (3 𝑗) (𝑎)

2𝑟

𝑑 𝑗,2 =
𝑓 (3 𝑗) (𝑏) − 2𝑓 (3 𝑗) (𝑚) + 𝑓 (3 𝑗) (𝑎)

2𝑟 2
, 𝑟 B 𝑟 (𝐼).

Following, we can also compute the exact range of 𝜔 (𝑥) = (𝑥 − 𝑎) (𝑥 −𝑚) (𝑥 − 𝑏) over the
interval 𝐼 to be

𝜔 (𝐼) = 2
√
3

9
𝑟 3 [−1, 1] =⇒ Ω =

√
3

27
𝑟 3.

With this instantiation, we get the recursive cubic Lagrange form with recursion level 𝑛:
𝐿
3,𝑛 𝑓 (𝐼) B ℎ0(𝐼) + [−1, 1]𝑇3,𝑛, (2.12)

where

𝑇3,𝑛 B
𝑛−1∑︁
𝑗=1
|ℎ 𝑗 (𝐼) |Ω 𝑗 + Ω𝑛 | 𝑓 (3𝑛) (𝐼) | ∈ O(𝑟 3).

2.2.5 A Cheaper Variant of the Recursive Lagrange Form
In the previous section, our cubic Lagrange form achieves its cubic convergence solely through
the exact term ℎ0(·), hence, we are motivated to balance the remainder term. The major trade-off
for the remainder term 𝑇3,𝑛 is speed of computation versus tightness of box form.

In this section, we argue that we can forgo some tightness in the recursive Lagrange form
in order to speed up computations. We observe that the terms in the remainder {|ℎ 𝑗 (𝐼) |} 𝑗≥1 are
quadratic interpolating polynomials that are computed exactly. Without disturbing the order of
convergence, we can replace the exact evaluation of these terms with a centered form evaluation
that is cheaper:

|ℎ 𝑗 (𝐼) | ← (𝑑 𝑗,0 + 𝑟 |𝑑 𝑗,1 | + 𝑟 2 |𝑑 𝑗,2 |) .
This gives us the cheap recursive cubic Lagrange form with recursion level 𝑛:

𝐿′
3,𝑛 𝑓 (𝐼) B ℎ0(𝐼) + [−1, 1]𝑇 ′3,𝑛, (2.13)

where

𝑇 ′3,𝑛 B
𝑛−1∑︁
𝑗=1
(𝑑 𝑗,0 + 𝑟 |𝑑 𝑗,1 | + 𝑟 2 |𝑑 𝑗,2 |)Ω 𝑗 + Ω𝑛 | 𝑓 (3𝑛) (𝐼) | ∈ O(𝑟 3)

The efficiency of this cheaper variant will be shown in empirical testing using real-root iso-
lation as the sample problem.

17

2.2.6 Recursive Lagrange Forms withQuartic Convergence
Let us consider applying the trick introduced by Cornelius and Lohner in (2.7) to the generalized
Taylor and Hermite forms above to achieve a ‘free’ higher order of convergence.

If we wish to apply this trick to the generalized Taylor forms in (2.9), we would modify the
exact part of 𝑇

𝑘,𝑛
𝑓 (𝐼) so that

𝑔(𝑥) ← 𝑔(𝑥) + 𝑓 (𝑘) (𝑚)
𝑘!

(𝑥 −𝑚)𝑘 .

However, we notice that this is simply the exact part for the generalized Taylor form of one higher
order: 𝑇

𝑘+1,𝑛 𝑓 (𝐼).
While the trick does not work for (2.9), we can effectively apply this to our recursive Lagrange

forms in 2.2.4 and 2.2.5 to achieve quartic convergence. Consider

ℎ̂0(𝑥) B ℎ0(𝑥) +
𝑓 (3) (𝑚)

6
𝜔 (𝑥).

We can view this alternate form as a combination of a Lagrange interpolating polynomial that
also satisfies ℎ̂(3)0 (𝑚) = 𝑓 (3) (𝑚). In its center form, the coefficients of the even-powered terms do
not change, while the odd-powered terms are modified, i.e.

ℎ̂0(𝑥) B 𝑑0,0 + 𝑑0,1(𝑥 −𝑚) + 𝑑0,2(𝑥 −𝑚)2 + 𝑑0,3(𝑥 −𝑚)3,

where

𝑑0,1 B 𝑑0,1 −
𝑓 (3) (𝑚)

6
𝑟 2, 𝑑0,3 B

𝑓 (3) (𝑚)
6

.

Following the idea of the trick, we can now define a new ℎ1(𝑥)

ℎ̂1(𝑥) B ℎ1(𝑥) − 𝑓 (3) (𝑚) = (𝑑1,1 + 𝑑1,2(𝑥 −𝑚)) (𝑥 −𝑚).

We can see the remainder terms are still bounded:

|𝑅
ℎ̂0
(𝐼) | ≤ Ω |𝑓 (3) (𝐼) − 𝑓 (3) (𝑚) |

|𝑅
ℎ̂1
(𝐼) | ≤ Ω |𝑓 (6) (𝐼) |

=⇒ |𝑓 (3) (𝐼) − 𝑓 (3) (𝑚) | ≤ |ℎ̂1(𝐼) | + Ω |𝑓 (6) (𝐼) |.

If we continue recursively splitting the remainder terms into the Cornelius and Lohner form,
we arrive at the recursive quartic Lagrange form with recursion level 𝑛:

𝐿
4,𝑛 𝑓 (𝐼) B ℎ̂0(𝐼) + [−1, 1]𝑇4,𝑛, (2.14)

where

𝑇4,𝑛 B |ℎ̂1(𝐼) |Ω +
𝑛−1∑︁
𝑗=2
|ℎ 𝑗 (𝐼) |Ω 𝑗 + Ω𝑛 | 𝑓 (3𝑛) (𝐼) | ∈ O(𝑟 4).

18

Of course, we can also use the cheaper evaluations by replacing the exact evaluations of |ℎ̂1(𝐼) |
and {|ℎ 𝑗 (𝐼) |} 𝑗≥2 with their centered form evaluations. This yields a faster but less tight box form:

𝐿′
4,𝑛 𝑓 (𝐼) B ℎ̂0(𝐼) + [−1, 1]𝑇 ′4,𝑛, (2.15)

where
𝑇 ′4,𝑛 B 𝑇 ′3,𝑛 − |𝑑1,0 |Ω ∈ O(𝑟 4).

Remark. In many numerical computing applications, we encounter continuous real-valued func-
tions that we can only query (i.e. we do not have access to the information on its expression, and only
know values of 𝑓 (·) at specific input values by querying). We can query the function that different
points and use an infinite basis (e.g. polynomial basis {𝑥𝑛}𝑛≥0, Fourier basis {𝑒𝑖𝑛𝑥 }𝑛∈Z) which can
be chosen such that it is dense in the continuous real-valued functions using the Stone-Weierstrass
theorem [Rudin 1976].

This motivates us to begin considering 𝑓 as a polynomial that was constructed as an ap-
proximation to some real-valued function belonging to the class of continuous (or continuous
almost-everywhere) functions.

If 𝑓 has degree 𝑑 , then we know the maximal recursive form for, say, the cubic Lagrange
polynomials will only depend on the terms {𝑓 (3 𝑗) (𝑎), 𝑓 (3 𝑗) (𝑏), 𝑓 (3 𝑗) (𝑏)}0≤ 𝑗≤⌊𝑑/3⌋ . The polynomials
becomes identically zero after 𝑑 + 1 derivatives and so for all recursion levels 𝑗 ≥ ⌊𝑑/3⌋, the
method becomes identical to the maximal recursive form.

We are now ready to move onto the novel methods that we have developed over the past year
as a follow-up to [Hormann et al. 2021].

19

3 | Results

Tomotivate our generalizations and results, wemake the argument that the Cornelius and Lohner
form in (2.2) cannot be realized in practical settings. That is, the so-called ‘exact range’ of 𝑔(𝐼)
cannot be precisely computed for any standard model of arithmetic in modern computer archi-
tectures, whether it be floating-point models, rational arithmetic models, or other families of
models.

Regardless of the model of arithmetic, elements of R are represented by elements from the
dyadic number system Z[12] = {𝑚2𝑛 | 𝑚,𝑛 ∈ Z}, which is a dense subset of R (this can easily be
showed first by showing density of Z[12] in Q, then showing density of Q in R and combining
the results in an epsilon argument). Suppose we wish to represent the number

√
3 exactly in our

computer, this is already impossible to do since
√
3 ∉ Z[12].

This problem can be circumvented using computer algebra systems and software such as
Maple or Mathematica, giving us exact access to all algebraic numbers (which is still a strict
subset of R). However, the performance issues of, say, representing a real number that has a high
degree (e.g. > 100) minimal polynomial over Z[12] makes these symbolic algebraic systems not
applicable in practical computational scenarios.

3.1 Overview
As a result, we introduce a generalization of the Cornelius and Lohner form using new ideas for
box forms that can provide a priori precision guarantees. We also introduce faster recursive range
functions that exceed the performance of previous box forms discussed in 2.2 in the application of
real-root isolation. We also develop an ‘amortized’ method of holistically evaluating the complex-
ity of range functions and apply it to a general class of range functions. Finally, we explore the
performance capabilities of non-maximal variants of the best performing range functions seen in
2.2.

3.2 Generalizing the Cornelius & Lohner Framework
Motivated by our discussion above, we replace the exact part 𝑔(𝐼) in the traditional Cornelius-
Lohner form by a range function for 𝑔:

𝑓 (𝐼) = 𝑔(𝐼) + 𝑅𝑔 (𝐼) (3.1)

20

Now, we generalize the bound of Theorem 2.6 so that we can bound the accuracy of the range
function 𝑓 (·) by its remainder alone.

Theorem 3.1. Given 𝑓 (·) as defined in (3.1), we have

𝑑𝐻 (𝑓 (𝐼), 𝑓 (𝐼)) ≤ 𝑑𝐻 (𝑔(𝐼), 𝑔(𝐼)) +𝑤 (𝑅𝑔 (𝐼))

Proof. First denote the endpoints of the intervals as follows:

𝑓 (𝐼) = [𝑓 (𝑥), 𝑓 (𝑥)], 𝑔(𝐼) = [𝑔(𝑦), 𝑔(𝑦)], 𝑅𝑔 (𝐼) = [𝑎, 𝑏]

Which is allowed by our assumption that 𝑓 , 𝑔 are continuous on the compact interval 𝐼 , giving
rise to minima and maxima 𝑥, 𝑥,𝑦,𝑦 to 𝑓 and 𝑔, respectively.

By the fact that 𝑔 is a range function for 𝑔, there must exist some interval 𝜀 = [𝜀, 𝜀], where
𝜀 ≤ 0 and 𝜀 ≥ 0, such that 𝑔(𝐼) = 𝑔(𝐼) + 𝜀.

Therefore we have

𝑑𝐻 (𝑔(𝐼), 𝑔(𝐼)) = max{−𝜀, 𝜀}
𝑓 (𝐼) ⊆ 𝑓 (𝐼) = 𝑔(𝐼) + 𝑅𝑔 (𝐼)

=⇒ 𝑑𝐻 (𝑓 (𝐼), 𝑓 (𝐼)) = max{𝑓 (𝑥) − (𝑔(𝑦) + 𝜀 + 𝑎), (𝑔(𝑦) + 𝜀 + 𝑏) − 𝑓 (𝑥)}

For the first term 𝑓 (𝑥) − (𝑔(𝑦) + 𝜀 + 𝑎), we have

𝑓 (𝑥) − (𝑔(𝑦) + 𝜀 + 𝑎) ≤ 𝑓 (𝑦) − (𝑔(𝑦) + 𝜀 + 𝑎)
= (𝑔(𝑦) + 𝑅𝑔 (𝑦)) − (𝑔(𝑦) + 𝜀 + 𝑎)
= 𝑅𝑔 (𝑦) − 𝜀 − 𝑎
≤ −𝜀 + (𝑏 − 𝑎).

For the second term (𝑔(𝑦) + 𝜀 + 𝑏) − 𝑓 (𝑥), we have

(𝑔(𝑦) + 𝜀 + 𝑏) − 𝑓 (𝑥) ≤ (𝑔(𝑦) + 𝜀 + 𝑏) − 𝑓 (𝑦)
= (𝑔(𝑦) + 𝜀 + 𝑏) − (𝑔(𝑦) + 𝑅𝑔 (𝑦))
= 𝜀 + 𝑏 − 𝑅𝑔 (𝑦)
≤ 𝜀 + (𝑏 − 𝑎).

Hence

𝑑𝐻 (𝑓 (𝐼), 𝑓 (𝐼)) = max{𝑓 (𝑥) − (𝑔(𝑦) + 𝜀 + 𝑎), (𝑔(𝑦) + 𝜀 + 𝑏) − 𝑓 (𝑥)}
≤ max{−𝜀 + (𝑏 − 𝑎), 𝜀 + (𝑏 − 𝑎)}
= max{−𝜀, 𝜀} +𝑤 (𝑅𝑔 (𝐼))
= 𝑑𝐻 (𝑔(𝐼), 𝑔(𝐼)) +𝑤 (𝑅𝑔 (𝐼)) .

□

21

However, in order to apply Theorem 3.1, we must have a stronger notion of range functions
that encapsulate this idea of specifying the error (𝜀 = [𝜀, 𝜀] in the proof) a priori for us to instan-
tiate reasonable range functions based on this theorem.

To do so, we introduce the notion of precision-bounded range functions or a strong box form
for a function 𝑔(𝑥), denoted 𝑔(𝐼 ; 𝜀), 𝜀 > 0. In addition to the usual properties that comes with
being a range function, we also require, for all 𝜀 > 0, that

𝑑𝐻 (𝑔(𝐼), 𝑔(𝐼 ; 𝜀)) ≤ 𝜀.

Now, using precision-bounded range functions, we are able to use our generalized Cornelius
and Lohner framework to construct useful box forms. We can define the framework for a box
form (that is precision-bounded) for 𝑓 (𝑥):

pb𝑓 (𝐼) B 𝑔(𝐼 ; 𝜀) + 𝑅𝑔 (𝐼)

Of course, it is then obvious to see that box functions of the form pb𝑓 converge on the same order
as 𝑅𝑔 by application of Theorem 3.1. Finally, if we set 𝑔(𝑥) to be some Hermite interpolant with
degree 𝑘−1, then 𝑅𝑔 (𝐼) will have convergence order 𝑘 . In conjunction with a precision-bounded
box form for 𝑔(𝑥), we can achieve box forms of arbitrary order of convergence.

3.3 Precision-Bounded Box Forms
In this section, we will explore the details in constructing these strong box forms.

3.3.1 Lipschitz Expressions
For 𝑓 : R𝑛 → R, we can express 𝑓 (·) for all elements in its proper domain (i.e. a subset of R𝑛 such
that the range of this subset under 𝑓 is properly contained in R) using some expression 𝐸 𝑓 . As
discussed in Chapter 1, we can also input interval vectors into the expression 𝐸 𝑓 .

The expression 𝐸 𝑓 is Lipschitz in B ∈ R𝑛 if we have the following inductive property:

(a) The root of 𝐸 𝑓 is labeled by a variable or constant.

(b) Writing 𝐸 𝑓 as a function of sub-expressions, i.e. 𝐸 𝑓 = 𝜑 (𝐸1, . . . , 𝐸𝑚).

(i) 𝐸𝑖 is Lipschitz in B for all 1 ≤ 𝑖 ≤ 𝑚.
(ii) 𝜑 (𝐸1(B), . . . , 𝐸𝑚 (B)) is defined, and there exists some 𝜀 > 0 such that 𝜑 is 𝐿-Lipschitz

in 𝐵𝜀 (𝐸1(B), . . . , 𝐸𝑚 (B)), where 𝐵𝜀 (x) B {y ∈ R𝑛 | ∥x − y∥𝐿2 < 𝜀} is the open ball of
radius 𝜀 around (𝐸1(B), . . . , 𝐸𝑚 (B)) (i.e.𝜑 is 𝐿-Lipschitz in some open neighbourhood
around B).

If this is satisfied, then we can use the following result from [Neumaier 1990]:

22

Theorem 3.2. If 𝐸 is a Lipschitz expression over B ∈ R𝑛 , then there exists a vector of ℓ =

(ℓ1, . . . , ℓ𝑛) ∈ R𝑛 such that for all 𝐵, 𝐵′ ⊆ B,

𝑑𝐻 (𝐸 (𝐵), 𝐸 (𝐵′)) ≤ ⟨ℓ, 𝑑𝐻 (𝐵, 𝐵′)⟩, 𝑑𝐻 (𝐵, 𝐵′) B (𝑑𝐻 (𝐼1, 𝐼 ′1), . . . , 𝑑𝐻 (𝐼𝑛, 𝐼 ′𝑛)),

where ⟨·, ·⟩ denotes the inner product over R𝑛 .

We can extend this result to box forms by replacing 𝐸 (𝐵′) with 𝐸 (𝐵) to show that 𝐸 (𝐵)
encloses 𝐸 (𝐵).

Now, we wish to develop an abstract representation, or model, of computing. We first assume
that 𝑓 (B) and 𝜕𝑖 𝑓 (B) are computable in our model, which leads us to computing 𝑓 (B) and
𝜕𝑖 𝑓 (B), which is finally realized in Turing computability using the density of Z[12] in R.
Let Ω be an expression class. We say that Ω is a Lipschitz+ class if all Ω-expressions that in-

duces a function 𝑓 that is Lipschitz+ (i.e. 𝑓 has continuous almost-everywhere partial derivatives
and both 𝑓 and ∇𝑓 = (𝜕1𝑓 , . . . , 𝜕𝑛 𝑓) are locally 𝐿-Lipschitz).

Suppose we are given a Ω-expression 𝐸 (·) for the function 𝑓 , where Ω is Lipschitz+, then
we can define the gradient of the expressions ∇𝐸 = (𝜕1𝐸, . . . , 𝜕𝑚𝐸). Each 𝜕𝑖𝐸 can be defined
recursively as follows:

𝜕𝑖𝐸 B


0 if 𝐸 a constant,
𝛿𝑖 𝑗 if 𝐸 a placeholder variable,∑𝑚

𝑗=1(𝜕𝑖 𝑓) (𝐸1, . . . , 𝐸𝑚) · 𝜕𝑖𝐸 𝑗 if 𝐸 = 𝑓 (𝐸1, . . . , 𝐸𝑚),

where

𝛿𝑖 𝑗 =

{
1 if 𝑖 = 𝑗,

0 otherwise,

is Kronecker’s delta function.
Now we can begin characterizing the function class for which there exists strong box forms

for. First, given a function 𝑓 : R𝑛 → R, a strong approximation function is a function 𝑓 : R𝑛 ×
R>0 → R such that for all tuples (𝑥, 𝜀) ∈ R𝑛 × R>0, we have

|𝑓 (𝑥 ; 𝜀) − 𝑓 (𝑥) | ≤ 𝜀.

An additional concept that we will see being used for the proof of Theorem 3.5 below is notion
of 𝜀-fineness.

Definition 3.3. Given an interval box B ∈ R𝑛 , a subdivision of B is a finite set of disjoint
subsets D = {𝐵1, . . . , 𝐵ℓ } such that

ℓ⋃
𝑖=1

𝐵𝑖 = B .

Definition 3.4. A subdivision D of an interval box B ∈ R𝑛 is 𝜀-fine with respect to a function
𝑓 : R𝑛 → R if

Δ(𝑓 , 𝐵) B 1
2

𝑛∑︁
𝑖=1

𝑤𝑖 (𝐵) · |𝜕𝑖 𝑓 (𝐵) | ≤
𝜀

4
, ∀𝐵 ∈ D .

23

Algorithm 2 Fine Subdivision Algorithm
Input: (𝑓 ,B, 𝜀)
Output: An 𝜀-fine subdivision D of B.
1: Let 𝑄,D be queues of boxes, initialized as D ← ∅ and 𝑄 ← {B}.
2: while 𝑄 ≠ ∅ do
3: 𝐵 ← 𝑄.pop()
4: (𝐽1 . . . 𝐽𝑛) ← ∇𝑓 (𝐵)
5: Δ(𝑓 , 𝐵) ← ∑𝑛

𝑖=1 |𝐽𝑖 | ·𝑤𝑖 (𝐵)
6: if Δ(𝑓 , 𝐵) ≤ 𝜀/4 then
7: D .push(𝐵)
8: else
9: 𝑖∗ ← argmax𝑖=1...𝑛 |𝐽𝑖 | ·𝑤𝑖 (𝐵)
10: 𝑄.push(bisect(𝐵, 𝑖∗)) ⊲ Bisect dimension 𝑖∗

11: Output D

For any 𝑓 , B, and 𝜀, Algorithm 2 allows us to find an 𝜀-fine subdivision of B with respect to
𝑓 .

Now we can state a lemma that provides sufficient conditions for there to exist a strong box
function.

Lemma 3.5. Let 𝑓 : R𝑛 → R be a Lipschitz+ function in B ∈ R𝑛 and has a strong approximation
function 𝑓 , then there exists a strong box function for 𝑓 .

Proof. Let us first compute an 𝜀-fine subdivisionD forB using Algorithm 2. Now for each 𝐵 ∈ D,
by the mean value theorem, we have for all 𝑏 ∈ 𝐵

|𝑓 (𝑏) − 𝑓 (𝑚(𝐵)) | ≤ Δ(𝑓 , 𝐵).

Then we can define, for each 𝐵 ∈ D, the interval

𝐽 (𝐵) B [𝑓 (𝑚(𝐵); 𝜀
4
) − 𝜀

2
, 𝑓 (𝑚(𝐵); 𝜀

4
) + 𝜀

2
] .

Of course, by an epsilon argument, we have for all 𝐵 ∈ D

• 𝑓 (𝐵) ⊆ 𝐽 (𝐵),

• 𝑑𝐻 (𝐽 , 𝑓 (𝐵)) < 𝜀.

Let 𝐽 (D) B ⋃
𝐵∈D 𝐽 (𝐵), then by the same argument, we have

• 𝑓 (B) ⊆ 𝐽 (D),

• 𝑑𝐻 (𝑓 (B), 𝐽 (D)) < 𝜀.

□

24

This strong box function is also computable in our abstract model if we also have a Lipschitz+
expression for it over some interval. This is our main theorem as it gives the necessary conditions
for functions that allow us to abstractly compute range functions using Theorem 3.1.

Theorem 3.6. Let Ω be a Lipschitz+ class where each 𝑓 ∈ Ω has a strong approximation function.
If 𝐸 (·) is a Lipschitz+ expression for 𝑓 over B ∈ R𝑛 , then the strong box function characterized by
𝐸 (B; 𝜀) is abstractly computable.

Proof. Using induction, we see the base case is trivial. Otherwise, the expression is re-writable as
𝐸 = 𝑓 (𝐸1, . . . , 𝐸𝑚), then we know 𝐼̃𝑖 B 𝐸𝑖 (𝐵; 𝜀𝑖) is abstractly computable for 𝑖 = 1, . . . ,𝑚. Setting
B̃ B (𝐼̃1, . . . , 𝐼̃𝑚), we can use Lemma 3.5 and its proof to compute 𝑓 (B̃; 𝜀). □

Remark. One of the most extensive classes of functions that satisfy the requirements above is the
class of Hypergeometric functions. i.e.

2𝐹1(𝑎, 𝑏, 𝑐; 𝑧) B
∞∑︁
𝑛=0

(𝑎)𝑛 (𝑏)𝑛
(𝑐)𝑛

𝑧𝑛

𝑛!
,

where

(𝑥)𝑛 =

{
1 if n=0,
𝑥 · (𝑥 + 1) · . . . · (𝑥 + 𝑛 − 1) if n>0,

is the Pochhammer symbol. This is primarily due to the fact that Hypergeometric functions are closed
under differentiation with respect to 𝑧, i.e. the derivative of a Hypergeometric function is another
Hypergeometric function with different parameters.

For further discussion on the exact computation of Hypergeometric functions, please see [Du et al.
2002] and [Du and Yap 2006].

3.4 Quartic Range Functions using Hermite Interpolation
We now shift our focus to practical range functions that can be used to compute ranges of real-
valued functions, and present a new range function based on Hermite interpolation that can
achieve better performance (in the context of real-root isolation) than those in [Hormann et al.
2021].

Let ℎ0 be a cubic Hermite interpolant for 𝑓 such that

ℎ0(𝑎) = 𝑓 (𝑎), ℎ′0(𝑎) = 𝑓 ′(𝑎), ℎ0(𝑏) = 𝑓 (𝑏), ℎ′0(𝑏) = 𝑓 ′(𝑏),

where [𝑎, 𝑏] = 𝐼 . We can write out this Hermite interpolant explicitly as

ℎ0(𝑥) = 𝑐0,0 + 𝑐0,1(𝑥 −𝑚) + 𝑐0,2(𝑥 −𝑚)2 + 𝑐0,3(𝑥 −𝑚)3, 𝑚 =𝑚(𝐼),

25

where

𝑐0,0 =
𝑓 (𝑏) + 𝑓 (𝑎)

2
− 𝑓 ′(𝑏) − 𝑓 ′(𝑎)

4
𝑟,

𝑐0,1 = 3
𝑓 (𝑏) − 𝑓 (𝑎)

4𝑟
− 𝑓 ′(𝑏) + 𝑓 ′(𝑎)

4
,

𝑐0,2 =
𝑓 ′(𝑏) − 𝑓 ′(𝑎)

4𝑟
,

𝑐0,3 =
𝑓 ′(𝑏) + 𝑓 ′(𝑎)

4𝑟 2
− 𝑓 (𝑏) − 𝑓 (𝑎)

4𝑟 3
, 𝑟 = 𝑟 (𝐼).

Now, the remainder can be written as

𝑅ℎ0 (𝑥) =
𝜔 (𝑥)
4!

𝑓 (4) (𝜉), 𝜔 (𝑥) = (𝑥 − 𝑎)2(𝑥 − 𝑏)2,

for some 𝜉 = 𝜉𝑥 ∈ 𝐼 . This provides us an upper bound for 𝑅ℎ0 (𝐼):

|𝑅ℎ0 (𝐼) | ≤ Ω |𝑓 (4) (𝐼) |, Ω =
|𝜔 (𝐼) |
4!

=
𝑟 4

24
.

Of course, we apply the same technique as in Section 2.2.4 in order to further bound |𝑓 (4) (𝐼) |.
This leads to the set of cubic Hermite interpolants {ℎ 𝑗 }1≤ 𝑗≤ℓ , where ℓ is the recursion level:

ℎ0(𝑥) = 𝑐 𝑗,0 + 𝑐 𝑗,1(𝑥 −𝑚) + 𝑐 𝑗,2(𝑥 −𝑚)2 + 𝑐 𝑗,3(𝑥 −𝑚)3,

with

𝑐 𝑗,0 =
𝑓 (4 𝑗) (𝑏) + 𝑓 (4 𝑗) (𝑎)

2
− 𝑓 (4 𝑗+1) (𝑏) − 𝑓 (4 𝑗+1) (𝑎)

4
𝑟,

𝑐 𝑗,1 = 3
𝑓 (4 𝑗) (𝑏) − 𝑓 (4 𝑗) (𝑎)

4𝑟
− 𝑓 (4 𝑗+1) (𝑏) + 𝑓 (4 𝑗+1) (𝑎)

4
,

𝑐 𝑗,2 =
𝑓 (4 𝑗+1) (𝑏) − 𝑓 (4 𝑗+1) (𝑎)

4𝑟
,

𝑐 𝑗,3 =
𝑓 (4 𝑗+1) (𝑏) + 𝑓 (4 𝑗+1) (𝑎)

4𝑟 2
− 𝑓 (4 𝑗) (𝑏) − 𝑓 (4 𝑗) (𝑎)

4𝑟 3
.

If we set 𝑅ℎ 𝑗
B 𝑓 (4 𝑗) − ℎ 𝑗 , then we have

|𝑓 (4 𝑗) (𝐼) | ≤ |ℎ 𝑗 (𝐼) | + |𝑅ℎ 𝑗
(𝐼) |

≤ |ℎ 𝑗 (𝐼) | + Ω |𝑓 (4 𝑗+4) (𝐼) |
=⇒ |𝑓 (4) (𝐼) | ≤ |ℎ1(𝐼) | + Ω(|ℎ2(𝐼) | + Ω |𝑓 (12) (𝐼) |)

≤ . . .

≤
ℓ∑︁
𝑗=1
|ℎ 𝑗 (𝐼) |Ω 𝑗−1 + Ωℓ | 𝑓 (4ℓ+4) (𝐼) |,

26

This gives us the recursive remainder bound

|𝑅ℎ0 (𝐼) | ≤ 𝑆ℓ , 𝑆ℓ B
ℓ∑︁
𝑗=1
|ℎ 𝑗 (𝐼) |Ω 𝑗 + Ωℓ+1 | 𝑓 (4ℓ+4) (𝐼) |.

This gives us the recursive Hermite form of order 4 and recursion level ℓ ≥ 0:

𝐻
4,ℓ 𝑓 (𝐼) = ℎ0(𝐼) + [−1, 1]𝑆ℓ , (3.2)

which depends on the values

𝑓 (4 𝑗) (𝑎), 𝑓 (4 𝑗+1) (𝑎), 𝑓 (4 𝑗) (𝑏), 𝑓 (4 𝑗+1) (𝑏), 0 ≤ 𝑗 ≤ ℓ .

Again, we can define the maximal recursion level Hermite form 𝐻
4 𝑓 (𝐼) B 𝐻

4,∞𝑓 (𝐼) if 𝑓 is
analytic and 𝑟 sufficiently small. Further, if 𝑓 is a polynomial of degree 𝑑 − 1, then

𝐻
4 𝑓 (𝐼) = 𝐻

4,ℓ 𝑓 (𝐼), ℓ ≥ ⌈
𝑑

4
⌉ − 1.

Of course, we can then introduce a cheap variant 𝐻 ′
4 𝑓 that forgoes some tightness of the

range function for computing performance. This is the same argument as in previous sections.
We end up having

𝐻 ′
4,ℓ 𝑓 (𝐼) B ℎ0(𝐼) + [−1, 1]𝑆′ℓ , (3.3)

where

𝑆′ℓ =
ℓ∑︁
𝑗=1

(
|𝑐 𝑗,0 | + 𝑟 |𝑐 𝑗,1 | + 𝑟 2 |𝑐 𝑗,2 | + 𝑟 3 |𝑐 𝑗,3 |

)
Ω 𝑗 + Ωℓ+1 | 𝑓 (4ℓ+4) (𝐼) |.

3.5 Complexity Analysis of Practical Range Functions
We provide a template for the amortized holistic complexity analysis for range functions 𝑓 (I),
where 𝑓 is a high degree polynomial, which is analysing its cost over a subdivision tree, not just
on a single interval. The motivation for this is due to the fact that if we utilize the range functions
in an algorithm that uses subdivision (like in the case of real-root isolation), then we may have
already computed some of the data required for the construction of the range function in the
subsequent subdivision intervals.

We begin by analysing the complexity of 𝐿′
3 𝑓 from (2.13) in [Hormann et al. 2021] which

had previously performed the best in our experiments, then move on to our newly defined 𝐻
4 𝑓 .

Finally, with the motivation of the above two sections, we generalize our analysis to all Hermite
interpolating schemes with equally spaced nodes with equal multiplicities.

Remark. Note that the analysis of the cheap variant also applied for the non-cheap variant (and
vice-versa) since the two variants do not change how the interval is subdivided and at which points
the values need to be computed.

27

Suppose we are given a polynomial function 𝑓 whose degree 𝑑 ≥ 2 and an interval I. We
wish to construct a range function 𝑓 (I) based on the information of the values of 𝑓 , 𝑓 ′, . . . , 𝑓 (𝑑)
in I.

Definition 3.7. A subdivision tree is a finite tree whose nodes are intervals such that

• The root of the tree is I,

• For any non-leaf node representing the interval [𝑎, 𝑏], its left and right children will repre-
sent the intervals [𝑎,𝑚] and [𝑚,𝑏] respectively.

Now we are ready to begin providing theoretical accounts for the empirical speedups that we
will observe in Chapter 4.

3.5.1 Amortized Complexity of 𝐿′
3 𝑓

Further assume that 3 | 𝑑 . In the case 𝑓 (I) = 𝐿′
3 𝑓 (I), we have

𝑓 (3 𝑗) (𝑎), 𝑓 (3 𝑗) (𝑚), 𝑓 (3 𝑗) (𝑏), 0 ≥ 𝑗 ≥ 𝑑/3 − 1.

Then the cost for computing 𝐿′
3 𝑓 (𝐼) is𝑑 . Althoughwe can show the cost to compute themaximal

Taylor form of order 2, 𝑇
2 𝑓 (𝐼), is also 𝑑 , when amortizing the complexity analysis over the entire

subdivision tree, we will distinguish a clear advantage as our cheap cubic Lagrange form can
re-use the information of the derivatives in its sub-intervals.

We wish to bound the cost 𝐶𝐿
3 (𝑇), defined as the total number of values needed to compute

𝐿′
3 for all 𝐼 ∈ 𝑇 . We can define the cost with a different parameters when we know that the tree

𝑇 has 𝑛 leaves.
Now we have the following recurrence relation:

𝐶𝐿
3 (𝑛) =

{
𝑑 if 𝑛 = 1,
𝐶𝐿
3 (𝑛𝐿) +𝐶𝐿

3 (𝑛𝑅) −
𝑑
3 if 𝑛 ≥ 2,

where 𝑛𝐿, 𝑛𝑅 are the number of leaves that the left and right subtrees have, respectively, and
𝑛𝐿 + 𝑛𝑅 = 𝑛. If we use induction on this recurrence relation, then we find that the amortized
complexity is

𝐶3
𝐿 (𝑛) = (2𝑛 + 1) ·

𝑑

3
.

If we have a full binary tree, it would have 2𝑛 − 1 nodes, hence the average cost per node will be

2𝑛 + 1
2𝑛 − 1 ·

𝑑

3
∼ 𝑑

3
,

this tells us that the asymptotic cost per node is 𝑑/3.

28

3.5.2 Amortized Complexity of 𝐻
4,ℓ 𝑓

Let ℓ be given. For simplicity and without loss of generality, assume that 𝑑 = 4(ℓ +1). For 𝐻
4 𝑓 (𝐼)

to be computed, we would require 4(ℓ + 1) = 𝑑 evaluations. We then have the recurrence relation

𝐶𝐻
4 (𝑛) =

{
𝑑 if 𝑛 = 1,
𝐶𝐻
4 (𝑛𝐿) +𝐶𝐻

4 (𝑛𝑅) − 𝑑/2 if 𝑛 ≥ 2,

This is similar to the analysis of 𝐿
3 𝑓 , except that the midpoint of the interval is never evaluated

and thus will never be shared to its children.
Of course, we can easily solve this recurrence and get that

𝐶𝐻
4 (𝑛) = (𝑛 + 1) ·

𝑑

2
,

and if we have a full binary tree with 2𝑛 − 1 nodes, our average cost per node will be
𝑛 + 1
2𝑛 − 1 ·

𝑑

2
∼ 𝑑

4
,

which means the asymptotic cost per node is 𝑑/4.

3.5.3 Amortized Complexity for General Hermite Forms
In the more general setting, suppose we have a Hermite interpolant ℎ 𝑓 (𝑥) of 𝑓 such that ℎ 𝑓

interpolates 𝑓 at the nodes 𝑢 = (𝑢0, . . . , 𝑢𝑚) with multiplicities ℎ = 𝜇0 = 𝜇1 = . . . = 𝜇𝑚 , where the
nodes 𝑢 are equally distributed in the input interval I = [𝑎, 𝑏]. That is,

𝑢𝑖 = 𝑎 + 𝑖

𝑚
(𝑏 − 𝑎).

Then we know the degree of the Hermite interpolant is at most 𝑑 B (𝑚 + 1)ℎ, which is also the
cost of realizing this Hermite interpolant over an interval. In order to amortize this cost over
the entire subdivision tree 𝑇 , let us first define 𝑁𝑚 (𝑇) to be the number of distinct nodes for all
intervals in 𝑇 . We clarify distinctness as it is possible that two intervals 𝐼 , 𝐽 in 𝑇 may share an
interpolating node, in which case we are encouraged to reuse the data and not compute it twice.

Further, we can assume our tree has 𝑛 leaves, re-define 𝑇 ← 𝑇𝑛 . Since 𝑇𝑛 is a binary tree,
the function 𝑁𝑚 (𝑇𝑛) is independent of the shape of the tree in our analysis, and we can simplify
notation to 𝑁𝑚 (𝑛).

Therefore, the cost of evaluating the tree 𝑇𝑛 is

𝐶
ℎ𝑓

𝑑
(𝑛) B ℎ · 𝑁𝑚 (𝑛).

Since a full binary tree with 𝑛 leaves has 2𝑛 − 1 nodes, we can define the amortized cost per node
for a general Hermite scheme to be

𝐶
ℎ𝑓

𝑑
B lim

𝑛→∞

𝐶
ℎ𝑓

𝑑
(𝑛)

2𝑛 − 1 .

Now, we can state and inductively prove our main theorem for amortized complexity analysis:

29

Theorem 3.8. With 𝑁𝑚 (𝑛), 𝐶
ℎ𝑓

𝑑
(𝑛), and 𝐶ℎ𝑓

𝑑
as defined above, we have

𝑁𝑚 (𝑛) =𝑚𝑛 + 1,

𝐶
ℎ𝑓

𝑑
(𝑛) = ℎ(𝑚𝑛 + 1),

𝐶
ℎ𝑓

𝑑
=
ℎ𝑚

2
=
1
2
(𝑑 − ℎ).

Proof. Of course, as long as we show 𝑁𝑚 (𝑛) = 𝑚𝑛 + 1, the other two equations follow trivially.
We claim that 𝑁𝑚 (𝑛) satisfies the following recurrence relation:

𝑁𝑚 (𝑛) =
{
𝑚 + 1 if 𝑛 = 1,
𝑁𝑚 (𝑛𝐿) + 𝑁𝑚 (𝑛𝑅) − 1 if 𝑛 > 1.

This can be shown via induction, the base case is trivial. Consider the tree 𝑇𝑛 with left sub-tree
𝑇𝑛𝐿 and right sub-tree𝑇𝑛𝑅 , we see that the two intervals of the children have one common shared
point, the midpoint. And since 𝑛 = 𝑛𝐿 + 𝑛𝑅 , we are done. □

Remark. While this is very useful to finding more optimal range functions, the theory is still prim-
itive. We are also restricted to, given any 𝑑 , using multiplicities ℎ such that ℎ divides 𝑑 .

30

4 | Experiments

We have repeatedly mentioned in previous sections on the empirical efficiency of the novel range
functions in the application of real-root isolation. This section will be to explain these concepts,
methodologies, and experimental results.

We first begin by understanding the problem of real-root isolation, and how the Eval algo-
rithm is able to solve this problem. We then turn to a theoretical limitation for using our pre-
viously constructed range functions for the Eval algorithm, as well as how previous results in
numerical analysis literature circumvent this issue. Finally, we discuss the experimental method-
ology and settings for the experiment, and provide detailed tables and figures that capture the
trends of the data.

We will see that the data does confirm our theoretical amortized complexity developed in
Section 3.5.

4.1 Real-Root Isolation and the Eval algorithm
Consider the function 𝑓 : R → R, the zeros of the function on a subset of the domain 𝑆 ⊆ R
forms the set 𝑍 𝑓 (𝑆) B {𝑥 ∈ 𝑆 | 𝑓 (𝑥) = 0}. An isolator for 𝑓 is an interval 𝐼 ∈ R such that
|𝑍 𝑓 (𝐼) | = 1, i.e. 𝐼 isolates the unique zero of 𝑓 . We then formulate the root isolation problem for
real-valued functions.

Problem 4.1 (Real-Root Isolation). Given 𝑓 : R → R and an interval I ∈ R, compute a set of
intervals 𝑍 = {𝐼1, . . . , 𝐼𝑛} ⊂ I such that |𝑍 𝑓 (𝐼𝑖) | = 1 ∀1 ≤ 𝑖 ≤ 𝑛.

We pose the addition restriction that this computation must be certified, i.e. the output of any
algorithm that solves this problem must be robust to all precision errors.

This makes the problem intractable in general. However, if we impose additional restrictions
on 𝑓 , namely that 𝑓 is continuously differentiable and all roots of 𝑓 inI havemultiplicity 1, we are
able to use the Eval algorithm to efficiently solve this problem with certification of correctness.

In terms of required numerical computation that Eval needs to do, we must have access to
the range functions 𝑓 (·) and 𝑓 ′(·). Eval uses two queue data structures to store intervals: 𝑄
for intervals yet to be processed, and 𝑍 for intervals that are isolators for 𝑓 under I. For a given
interval in 𝑄 , it can

• Contain no roots, in which it is discarded.

31

• Contain a single root, in which it is added to 𝑍 .

• Contain more than one root, in which it is bisected about the midpoint and the two sub-
intervals are added to the back of 𝑄 .

As seen in Algorithm 3, if the range functions 𝑓 and 𝑓 ′ are convergent onI, then the algorithm
will terminate and return the isolating set.

Algorithm 3 Real root isolation with range functions
Input: 𝑓 : R→ R and I ∈ R
Output: 𝑍 containing isolators for each 𝜁 ∈ 𝑍 𝑓 (I)
1: procedure Eval(𝑓 ,I)
2: initialize 𝑄 := {𝐼𝑖} and 𝑍 := ∅
3: while 𝑄 is non-empty do
4: 𝐼 := 𝑄.pop(), where 𝐼 = [𝑎, 𝑏]
5: if 0 ∈ 𝑓 (𝐼) then ⊲ 𝐼 is implicitly discarded if 0 ∉ 𝑓 (𝐼)
6: if 0 ∈ 𝑓 ′(𝐼) then
7: 𝑄.push([𝑎,𝑚], [𝑚,𝑏]), where𝑚 =𝑚(𝐼)
8: else ⊲ 𝑓 is strictly monotonic
9: if 𝑓 (𝑎) 𝑓 (𝑏) ≤ 0 then ⊲ 0 ∈ 𝑓 (𝐼)
10: 𝑍 .push(𝐼)
11: return 𝑍

In Algorithm 3, the algorithm will push an interval into the solution 𝑍 ⇔ 𝑓 (𝑎) 𝑓 (𝑏) ≤ 0. The
intermediate value theorem guarantees correctness. Furthermore, the interval [𝑎, 𝑏] is guranteed
to be strictly monotonic from the if condition that 0 ∉ 𝑓 ′([𝑎, 𝑏]).

Additionally, if 𝑓 ∈ Q[𝑥] and our computation model uses rational arithmetic, the inequality
in line 9 of Algorithm 3 is strict and we can further test 𝑓 ((𝑎 +𝑏)/2) = 0 to see if the midpoint is
a root since we will have exact rational representations in the computer.

4.2 Estimating the Range of the Derivative
Eval not only needs to construct a range function for 𝑓 , but also for 𝑓 ′. Let us walk through the
theoretical derivations for finding a range function for 𝑓 ′ given that we have already computed
a range function for 𝑓 .

4.2.1 Generalized Taylor Forms
This issue resolves nicely if our choice of range function is a generalized Taylor form with recur-
sion level 𝑛 − 1 for 𝑓 ′ has form

𝑇
𝑘,𝑛−1𝑓

′(𝐼) = 𝑔′
𝑘
(𝐼) + [−1, 1]𝑟𝑘𝑆′

𝑘,𝑛−1,

32

where

𝑆′
𝑘,𝑛−1 B

𝑛−1∑︁
𝑖=𝑘+1

𝑟 𝑖−𝑘−1 · |𝑓
(𝑖) (𝑚) |
(𝑖 − 1)! + 𝑟

𝑛−𝑘−1 · | 𝑓 (𝑛) (𝐼) |
(𝑛 − 1)! ,

and 𝑔′
𝑘
(𝐼) is the derivative of the 𝑘-th order Taylor polynomial for 𝑓 about 𝑚. Hence, we can

easily see that the convergence order of the range function for both 𝑓 and 𝑓 ′ are the same (i.e.
order 𝑘), and that the construction of these two range functions are also reliant on the same data.

4.2.2 Cubic Lagrange Forms

Let us first consider 𝐿
3,𝑛 𝑓
′(𝐼). Here, we have more complications since the construction of this

range function would require the evaluation of 𝑓 3 𝑗+1({𝑎,𝑚,𝑏}) for all 𝑗 . If we compute this range
function naïvely, this would double the computational cost andmake the application of this range
function in the context of real-root isolation useless.

However, we recall a result from [Shadrin 1995]:

Theorem 4.2 (Shadrin’s Theorem). Let 𝑓 : R → R be a real function and ℎ : R → R be its
Lagrange interpolating polynomial that interpolates 𝑓 at 𝑥0, . . . , 𝑥ℓ ∈ 𝐼 . Then

sup
𝑥∈𝐼
|𝑓 (𝑘) (𝑥) − ℎ(𝑘) (𝑥) | ≤ |𝜔 (𝑘) (𝐼) | 𝑓

(ℓ+1) (𝐼)
(ℓ + 1)! , 0 ≤ 𝑘 ≤ ℓ,

where

𝜔 (𝑥) =
ℓ∏

𝑖=0
(𝑥 − 𝑥𝑖).

In the context of 𝐿
3,𝑛 , we have

sup
𝑥∈𝐼
|𝑓 ′(𝑥) − ℎ′0(𝑥) | ≤ |𝜔′(𝐼) |

|𝑓 (3) (𝐼) |
6

.

Both of these terms are easily bounded:

𝜔′(𝐼) = [−1, 1]𝑟 2, Ω |𝑓 (3) (𝐼) | ≤ 𝑇3,𝑛 .

Therefore, we can easily estimate 𝑓 ′(𝐼) using the following form,

𝐿
2,𝑛 𝑓
′(𝐼) B ℎ′0(𝐼) +

3
√
3

𝑟
[−1, 1]𝑇3,𝑛,

where 𝑇3,𝑛 is as defined in (2.12), which depends on the same data as 𝐿
3,𝑛 𝑓 (𝐼), albeit with only

quadratic convergence. Note that this also applies to the cheap variant of the cubic Lagrange
form (2.13).

However, this does not apply to 𝐿
4,𝑛 since ℎ̂0 is no longer a Lagrange interpolant.

33

4.2.3 Quartic Hermite Forms
This case is also complicated as we do not want to double our computation time by separately
constructing 𝐻

4,ℓ 𝑓
′(𝐼). Let us first consider some Lagrange interpolant 𝐿(𝑥) for 𝑓 , interpolating

the four nodes 𝑥0, . . . , 𝑥3 ∈ 𝐼 . We can use Theorem 4.2 and get

sup
𝑥∈𝐼
|𝑓 ′(𝑥) − 𝐿′(𝑥) | ≤ |𝜔

′(𝐼) |
4!
|𝑓 (4) (𝐼) |, 𝜔 (𝑥) =

3∏
𝑖=0
(𝑥 − 𝑥𝑖).

We use an important remark in [Waldron 1997], that this supremum bound is continuous with
respect to {𝑥𝑖}. Hence, if we consider the limit as 𝑥0, 𝑥1 → 𝑎 and 𝑥2, 𝑥3 → 𝑏, our interpolant
approaches (uniformly) ℎ0, which is our Hermite interpolant for 𝐻

4,ℓ :

sup
𝑥∈𝐼
|𝑓 ′(𝑥) − ℎ′0(𝑥) | ≤

𝜔′(𝑥)
4!
|𝑓 (4) (𝐼) |.

Since we have 𝜔′(𝐼) = 8
9
√
3𝑟 3 [−1, 1], we can use the same recursive remainder bound that we

have used prior to construct the remainder bound

|𝑅′
ℎ0
(𝐼) | ≤ 8

√
3

9
𝑟 3

4!
|𝑓 (4) (𝐼) | ≤ 8

√
3

9𝑟
𝑆ℓ ,

where 𝑆ℓ is as defined in (3.2).
As a result, we have the following recursive Hermite form for 𝑓 ′:

𝐻
3,ℓ 𝑓
′(𝐼) B ℎ′0(𝐼) +

8
√
3

9𝑟
𝑆ℓ .

While these only have cubic convergence, they depend on the same data as 𝐻
4,ℓ 𝑓 (𝐼), so we save

computation time in practice. Note that this also work for the cheap variant by replacing 𝑆ℓ with
𝑆′ℓ .

4.3 Methodology and Settings
In practice, we implemented a version of Eval in C++ under the Core Library (see Core Library),
which contains and implements various paradigms in exact computation. We also implemented
all of the range functions mentioned in [Hormann et al. 2021] and in Chapter 3. In particular, the
two box forms 𝐿

3,ℓ and
𝐻
4,ℓ and their associated cheap variants also had non-maximal recursion

level forms implemented as well.
We ran the various introduced range functions with 𝑓 belonging to various families of poly-

nomials: dense with all roots real, corresponding to the Chebyshev polynomials 𝑇𝑛 , Hermite
polynomials𝐻𝑛 , and Wilkinson’s polynomials𝑊𝑛; dense with only two real roots, corresponding
to the Mignotte cluster𝑀2𝑘+1; and sparse without real roots, corresponding to 𝑆𝑛 . Depending on
the family of polynomials chosen, we provide different starting intervals 𝐼0 to the Eval algorithm.

34

https://cs.nyu.edu/exact/core_pages/index.html

Holistically, we wish to measure the two components that best approximate the idea of ‘per-
formance’ for the range functions: (1) size of the subdivision tree and (2) running time on (a) 1024-
bit floating point arithmetic and (b)multi-precision rational arithmetic. Our experimentswere ran
on aWindows 10 laptop with a 1.8 GHz Intel Core i7-8550U processor with 16GB of RAM. For the
multi-precision rational arithmetic case in particular, as the only non-rational number we have to
explicitly compute is

√
3, it is replaced by the slightly larger number 17320508075688773 × 10−16.

Our implementation, including code and data, may be downloaded from the Core Library web
page here.

In total, we tested eleven different range functions. Our first three range functions were the
state-of-the-art performers in [Hormann et al. 2021]: 𝑇

2 ,
𝐿
3 ,

𝐿′
3 . We then tested three non-

maximal variants of 𝐿′
3,ℓ , ℓ ∈ {10, 15, 20}. The next two, 𝐻

4 and 𝐻 ′
4 , are based on the quartic

Hermite functions as well as the cheaper variant. Finally, the last three are the non-maximal
cheap quartic Hermite range functions 𝐻 ′

4,ℓ , ℓ ∈ {10, 15, 20}.

4.4 Results
Table 4.1 reports the sizes of the Eval subdivision trees, which serve as a measure of the tightness
of the underlying range functions. In each row, the smallest tree size is underlined. As expected,
the methods based on range functions with quartic convergence order outperform the others and
in general the tree size decreases as the recursion level increases, except for sparse polynomials.

We further observe that the differences between the tree sizes for E𝐿′4 and E𝐻 ′4 are small, indi-
cating that the tightness of a range function is determined mainly by the convergence order, but
much less by the type of local interpolant (Lagrange or Hermite). However, as already pointed
out in [Hormann et al. 2021], a smaller tree size does not necessarily correspond to a faster run-
ning time. In fact, E𝐿′3 was found to usually be almost as fast as E𝐿′4 , even though the subdivision
trees of E𝐿′3 are consistently bigger than those of E𝐿′4 .

In Figure 4.2, we do a direct comparison of the Eval version based on our new range function
E𝐻 ′4 with the previous leader E𝐿′3 : for the test polynomials in our suite, the new function is faster
for polynomials of degree greater than 25, with the speedup approaching and even exceeding the
theoretical value of 1.33 of Section 4.2. In terms of tree size they are similar (differing by less than
5%, Table 4.1). Hence, E𝐻 ′4 emerges as the new winner among the practical range functions from
our collection. even though it is possible to further decrease the runtime by taking advantage of
range functions with non-maximal recursion levels.

4.4.1 Non-Maximal Recursion Levels
High order of convergence is important for applications such as numerical differential equations.
But a sole focus on convergence order may be misleading as noted in [Hormann et al. 2021]: for
any convergence order 𝑘 ≥ 1, a subsidiary measure may be critical in practice. For Taylor forms,
this is the refinement level 𝑛 ≥ 𝑘 and for our recursive range functions, it is the recursion level
ℓ ≥ 0. In [Hormann et al. 2021] we focused onmaximal levels (for polynomials) after showing that
the ˜𝑇

2 (the minimal level Taylor form of order 2) is practically worthless for the Eval algorithm.

35

https://cs.nyu.edu/exact/core_pages/index.html

Table 4.1: Size of the Eval Subdivision Tree

𝑓 𝑟 (𝐼0) E𝑇2 E𝐿′3 E𝐿′4 E𝐿′3,10 E𝐿′3,15 E𝐿′3,20 E𝐻4 E𝐻 ′4 E𝐻 ′4,10 E𝐻 ′4,15 E𝐻 ′4,20
𝑇20 319 243 231 243 243 243 239 239 239 239 239
𝑇40 663 479 463 479 479 479 471 479 479 479 479
𝑇80 10 1379 1007 955 1023 1007 1007 967 991 991 991 991
𝑇160 2147 1427 1347 1543 1451 1427 1351 1359 1439 1363 1359
𝑇320 - 2679 2575 3023 2699 2679 2591 2591 2803 2603 2591
𝐻20 283 215 207 215 215 215 199 207 207 207 207
𝐻40 539 423 415 423 423 423 415 419 419 419 419
𝐻80 40 891 679 655 711 679 679 659 683 695 683 683
𝐻160 1435 955 923 1083 959 955 923 927 1023 927 927
𝐻320 - 2459 2415 45287 10423 4419 2455 2499 15967 5195 3119
𝑀21 169 113 109 113 113 113 105 105 105 105 105
𝑀41 339 215 213 215 215 215 219 223 223 223 223
𝑀81

1 683 445 423 507 445 445 427 431 443 431 431
𝑀161 - 905 857 7245 1755 1047 861 861 2663 1079 905
𝑊20 485 353 331 353 353 353 331 335 335 335 335
𝑊40 901 633 613 633 633 633 615 617 617 617 617
𝑊80

1000 1583 1133 1083 2597 1133 1133 1097 1117 1485 1117 1117
𝑊160 - 2005 1935 293509 5073 2005 1959 1993 42413 5289 2817
𝑆100 973 633 609 611 621 625 613 613 595 609 613
𝑆200 10 1941 1281 1221 1211 1227 1237 1231 1231 1165 1187 1201
𝑆400 - 2555 2435 2379 2399 2413 2467 2467 2289 2319 2339

36

Figure 4.1: Speedup𝜎 (ℓ) of E𝐿′3,ℓ (left) and E𝐻
′

4,ℓ (right) against their maximal level counterparts with respect
to ℓ for polynomials of degree 125 (top) and 250 (bottom) from different families.

We now experimentally explore the use of non-maximal levels.
Figure 4.1 plots the (potential) level speedup factor 𝜎 (ℓ) against level ℓ ≥ 0. More precisely,

consider the time for Eval to isolate the roots of a polynomial 𝑓 in some interval 𝐼0. Let 𝑘,ℓ 𝑓 be
a family of range functions of order 𝑘 , but varying levels ℓ ≥ 0. If 𝐸𝑘,ℓ (resp., 𝐸𝑘) is the running
time of Eval using 𝑘,ℓ 𝑓 (resp., 𝑘,∞𝑓), then 𝜎 (ℓ) B 𝐸𝑘/𝐸𝑘,ℓ . Of course, it is only a true speedup if
𝜎 (ℓ) > 1. These plots support our intuition in [Hormann et al. 2021] that minimal levels are rarely
useful (except at low degrees). Most strikingly, the graph of 𝜎 (ℓ) shows a characteristic shape of
rapidly increasing to a unique maxima and then slowly tapering to 1, especially for polynomials
𝑓 with high degrees. This suggests that for each polynomial, there is an optimal level to achieve
the greatest speedup. In our tests (see Figure 4.1), we saw that both the optimal level and the
value of the corresponding greatest speedup factor depend on 𝑓 . Moreover, we observed that the
achievable speedup tends to be bigger for E𝐻 ′4 than for E𝐿′3 and that it increases with the degree
of the polynomial 𝑓 .

37

Figure 4.2: Speedup 𝜎 of E𝐻 ′4 with respect to E𝐿′3 for different families of polynomials and varying degree:
raw (left) and smoothed with moving average over five points (right).

4.4.2 Running Times
In Table 4.2 and Table 4.3 we report the running times of our eleven different Eval versions for
several families of polynomials. Times are given in seconds and averaged over at least four runs
(and many more for small degree polynomials). Generally, E𝑋

𝑘,ℓ
(𝑋 = 𝑇, 𝐿, 𝐻 for Taylor, Lagrange,

Hermite forms) is the running time of Eval using the appropriate forms of order 𝑘 and level ℓ (ℓ
may be omitted when the level is maximal)

The last three columns in both tables report the speedup ratios 𝜎 (·) of E𝐻 ′4 , E𝐻 ′4,15, and E𝐿′3,15
with respect to E𝐿′3 , which was identified as the overall winner in [Hormann et al. 2021].

38

Table 4.2: Average Running Time of Eval with 1024-bit Floating Point Arithmetic in Seconds.

𝑓 𝑟 (𝐼0) E𝑇2 E𝐿′3 E𝐿′4 E𝐿′3,10 E𝐿′3,15 E𝐿′3,20 E𝐻4 E𝐻 ′4 E𝐻 ′4,10 E𝐻 ′4,15 E𝐻 ′4,20 𝜎
(
E𝐻 ′4

)
𝜎
(
E𝐻 ′4,15

)
𝜎
(
E𝐿′3,15

)
𝑇20 0.0288 0.0152 0.0153 0.0179 0.0212 0.0243 0.0201 0.0157 0.023 0.0274 0.0316 0.97 0.57 0.72
𝑇40 0.19 0.0669 0.0663 0.0723 0.068 0.0726 0.078 0.0637 0.0864 0.0944 0.102 1.05 0.71 0.98
𝑇80 10 1.35 0.379 0.363 0.366 0.386 0.397 0.398 0.327 0.465 0.494 0.49 1.16 0.77 0.98
𝑇160 8.23 1.82 1.71 1.23 1.35 1.45 1.61 1.38 1.56 1.78 2.04 1.31 1.02 1.35
𝑇320 - 12.7 12.1 5.11 5.44 6.19 10.4 9.53 6.68 7.84 9.29 1.33 1.62 2.34
𝐻20 0.0242 0.0127 0.013 0.0149 0.0177 0.0204 0.0159 0.0128 0.0191 0.0226 0.0256 0.99 0.56 0.72
𝐻40 0.15 0.0575 0.058 0.0632 0.0601 0.0652 0.0709 0.0547 0.0862 0.092 0.0923 1.05 0.63 0.96
𝐻80 40 0.881 0.259 0.255 0.26 0.263 0.266 0.273 0.225 0.324 0.349 0.346 1.15 0.74 0.98
𝐻160 5.47 1.22 1.16 0.854 0.872 0.953 1.1 0.972 1.1 1.23 1.38 1.26 1.00 1.4
𝐻320 - 11.6 11.4 77.4 21.2 10.3 9.88 9.21 38.4 15.7 11.3 1.26 0.74 0.55
𝑀21 0.0223 0.00767 0.00726 0.00826 0.0101 0.0123 0.00881 0.0072 0.0104 0.0125 0.0143 1.07 0.61 0.76
𝑀41 0.103 0.032 0.0319 0.0349 0.0325 0.035 0.0391 0.0309 0.0417 0.0444 0.0489 1.03 0.72 0.99
𝑀81

1 0.707 0.169 0.159 0.179 0.168 0.173 0.174 0.14 0.203 0.217 0.214 1.21 0.78 1.01
𝑀161 - 1.2 1.13 5.96 1.68 1.09 1.05 0.898 2.96 1.53 1.62 1.34 0.79 0.72
𝑊20 0.0492 0.0222 0.0201 0.0212 0.0211 0.0211 0.0261 0.0205 0.0256 0.026 0.0256 1.08 0.85 1.05
𝑊40 0.282 0.0873 0.0874 0.096 0.0918 0.0995 0.114 0.0858 0.111 0.112 0.111 1.02 0.78 0.95
𝑊80

1000 1.82 0.426 0.416 0.936 0.449 0.439 0.467 0.38 0.706 0.576 0.562 1.12 0.74 0.95
𝑊160 - 2.74 2.65 257 5.56 2.68 2.52 2.22 49.8 7.52 4.59 1.23 0.37 0.49
𝑆100 1.33 0.351 0.337 0.293 0.331 0.351 0.35 0.286 0.378 0.436 0.461 1.23 0.81 1.06
𝑆200 10 9.55 2.32 2.21 1.2 1.41 1.59 2.02 1.77 1.6 1.98 2.31 1.31 1.18 1.65
𝑆400 - 16.6 15.9 4.89 5.84 6.66 13.4 12.5 6.46 8.28 9.98 1.34 2.01 2.85

Table 4.3: Average Running Time of Eval with Multi-Precision Rational Arithmetic in Seconds.

𝑓 𝑟 (𝐼0) E𝑇2 E𝐿′3 E𝐿′4 E𝐿′3,10 E𝐿′3,15 E𝐿′3,20 E𝐻4 E𝐻 ′4 E𝐻 ′4,10 E𝐻 ′4,15 E𝐻 ′4,20 𝜎
(
E𝐻 ′4

)
𝜎
(
E𝐻 ′4,15

)
𝜎
(
E𝐿′3,15

)
𝑇20 0.0411 0.0223 0.0245 0.0269 0.0325 0.0378 0.0417 0.0233 0.0347 0.0429 0.0505 0.96 0.52 0.69
𝑇40 0.261 0.11 0.111 0.121 0.109 0.117 0.146 0.0959 0.126 0.141 0.156 1.15 0.78 1.01
𝑇80 10 1.76 0.631 0.611 0.62 0.644 0.658 0.824 0.524 0.769 0.805 0.781 1.2 0.78 0.98
𝑇160 11.3 3.14 2.87 2.23 2.36 2.62 3.82 2.41 2.7 2.96 3.36 1.3 1.06 1.33
𝑇320 - 31.8 30.8 13.7 14.1 15.9 36.2 21.8 16.6 18.5 21.8 1.46 1.72 2.25
𝐻20 0.03 0.0169 0.0182 0.0205 0.025 0.0296 0.0239 0.0176 0.0273 0.0338 0.0402 0.96 0.50 0.68
𝐻40 0.185 0.0858 0.0885 0.0956 0.0927 0.106 0.131 0.0844 0.109 0.123 0.136 1.02 0.70 0.93
𝐻80 40 1.1 0.399 0.391 0.41 0.412 0.423 0.541 0.329 0.495 0.523 0.504 1.21 0.76 0.97
𝐻160 7.51 1.99 1.89 1.5 1.51 1.65 2.55 1.47 1.81 1.87 2.13 1.35 1.06 1.32
𝐻320 - 29.5 28.9 303 67 27.7 39.1 20.9 123 40.8 26.2 1.41 0.72 0.44
𝑀21 0.0238 0.0115 0.0119 0.013 0.0154 0.0179 0.015 0.0106 0.0162 0.0198 0.0233 1.09 0.58 0.75
𝑀41 0.124 0.0466 0.0478 0.0529 0.0488 0.0537 0.07 0.0471 0.066 0.0746 0.0847 0.99 0.63 0.96
𝑀81

10 0.947 0.298 0.278 0.321 0.288 0.293 0.381 0.236 0.346 0.359 0.344 1.27 0.83 1.04
𝑀161 - 2.18 2.03 13.6 3.29 2.08 2.64 1.57 5.89 2.62 2.42 1.39 0.83 0.66
𝑊20 0.0652 0.0332 0.0346 0.0344 0.0343 0.0346 0.0491 0.0352 0.0445 0.0442 0.0452 0.94 0.75 0.97
𝑊40 0.431 0.18 0.176 0.182 0.163 0.161 0.225 0.143 0.191 0.195 0.191 1.26 0.92 1.1
𝑊80

1000 2.75 0.846 0.826 1.96 0.877 0.847 1.15 0.708 1.41 1.1 1.09 1.2 0.77 0.97
𝑊160 - 6.28 6.1 932 14.6 6.21 8.22 4.78 155 19 10.6 1.31 0.33 0.43
𝑆100 1.35 0.474 0.457 0.451 0.483 0.477 0.663 0.419 0.603 0.591 0.57 1.13 0.80 0.98
𝑆200 10 12 3.65 3.49 2.28 2.59 2.83 4.79 2.68 2.73 3.13 3.59 1.36 1.17 1.41
𝑆400 - 44.8 42.7 16.4 18.9 21.5 51.8 30 19.6 24.2 28.3 1.50 1.85 2.37

39

5 | Conclusion

We have generalized the Cornelius and Lohner framework in order to achieve, for the first time,
range functions that converge with arbitrarily high order. This is done by first developing suffi-
cient theory, then transposing the theory into a realization of new recursive schemes, the con-
struction of which are of importance theoretically, analytically, and practically. We have also
chosen specific range functions such as 𝐻 ′

4,ℓ that outperform other similar range functions, which
we then show is significant for applications in real-root isolation.

Additionally, the amortized complexity model is also applicable in other problems that utilize
subdivision algorithms, perhaps in higher dimensions (i.e compact interval boxes rather than
intervals in the real line). The application of amortized complexity analysis to our current range
functions yield theoretical speedup percentages that are well supported by our computational
experiments.

Finally, the development of strong box functions for the generalized Cornelius and Lohner
framework may also find importance in other applications.

5.1 Future Work
At the moment, there are a few possible extensions of the work presented, whether further in
real-root isolation, range functions, or in entirely different domains. One possible example is
to theoretically explain the ‘uni-modal’ phenomenon of 𝜎 (ℓ) captured by Figure 4.1 in order to
develop techniques that allow for a priori estimation of the optimal choice of recursion level ℓ
(with respect to minimum run time) for a given class of functions. We suspect that this inherently
is dependent on the ‘roughness’ of the function, and leave the notion of ‘roughness’ to be fit with
various metrics such as Hölder conditions, Lipschitz conditions, or others.

Moreover, we would also like to further understand the idiosyncrasies of the class of sparse
polynomials 𝑆𝑛 and why the size of the Eval subdivision tree increases with ℓ (in contrast to the
other polynomial classes, which decrease as ℓ increases).

Another possible extension is to further develop the theory of strong box functions as it is
quite primitive in its current form.

40

A | Appendix

Below is a program synopsis for the Eval program under the Core Library.

41

EVAL Program Synopsis

Introduction

This file provides a high level overview of the purpose and methods of classes used in the EVAL program, the
relationship between these classes are also illustrated. For further details, please consult the README file or refer
to the paper K. Hormann, L. Kania, C. Yap. 2021. Novel Range Functions via Taylor Expansions and
Recursive Lagrange Interpolation with Applications to Real Root Isolation. ISSAC 2021.
Note: Some testing, debugging, timing, and other ‘unessential’ attributes and methods are ignored. All classes
detailed below can be implemented using either rational or bigfloat arithmetic (Which can be initialized by base.h,
baseF.h, and baseR.h).

Main Entry Point

After compilation, the EVAL program can be ran from the terminal by using preset commands from the Makefile
(The Makefile commands provides all the customization needed). There are three EVAL executables: eval.exe
(General Eval), evalF.exe (General Eval with Floating Point Arithmetic), evalR.exe (General Eval with Rational
Arithmetic).

List of Files

• data

– chebyshev.int chebyshev020.pol chebyshev040.pol chebyshev080.pol chebyshev160.pol chebyshev320.pol

– hermite.int hermite020.pol hermite040.pol hermite080.pol hermite160.pol hermite320.pol

– sparse.int sparse0100.pol sparse0200.pol sparse0400.pol sparse0800.pol

– wilk.int wilk020.pol wilk040.pol wilk080.pol wilk160.pol wilk320.pol

• base.h baseF.h baseR.h

• eval.cpp eval.h

• evalL3.cpp evalL3.h

• evalL3cheap.cpp evalL3cheap.h

• evalL4.cpp evalL4.h

• evalL4cheap.cpp evalL4cheap.h

• evalLagrange.h

• evalT2.cpp evalT2.h

• evalT2min.cpp evalT2min.h

• evalT3.cpp evalT3.h

• evalT4.cpp evalT4.h

• evalTaylor.h

• exactRange.h

• interval.cpp interval.h

• mignotte.cpp

• polynomial.cpp polynomial.h

• eval.exe evalR.exe evalF.exe

• README Makefile

1

Supportive Classes

Class: Interval

1: Real a, b; ▷ Left/right endpoints
2: Integer level; ▷ Level of subtree (num. times the interval has been halved)
3: Integer adata,mdata, bdata; ▷ Ptr to each point’s list of derivatives: [f (0)(a/m/b), . . . , f (n)(a,m, b)]
4:

5: Interval(): a, b, level← 0;
6: Interval(x): a, b← x; level← 0;
7: Interval(x, y, l = 0): a← x; b← y; level← l; ▷ If x > y switch assignments
8:

9: Methods for interval arithmetic, interval predicate, midpoint, width, and radius are implemented.

Class: Polynomial

1: Integer n; ▷ Degree of polynomial
2: Vector⟨Real⟩ c; ▷ Coefficients
3:

4: Polynomial(): n← −1; c← 0; ▷ Zero Polynomial
5: Polynomial(Integer nn): n← nn; c← ⟨0, . . . , 0⟩ ▷ User fills in coefficients
6: Polynomial(Vector⟨Real⟩ v): c← v; n← dim(v); ▷ Highest degree coefficient can’t be 0
7:

8: Real/Interval Eval(Real/Interval x): Return f(x); ▷ Interval evaluated using Horner’s method
9: Real EvalDiff(Real x, Integer k = 1): Return f (k)(x);

10: Real EvalTaylor(Real x, Integer k = 1): Return f(k)(x)
k! ;

11: Polynomial Shift(Real m, Integer t = −1):
12: g(x)← f(x+m); Truncate g at degree t; ▷ If t = −1, do not truncate
13: Return g
14: Polynomial Diff(Integer k = 1): Return f (k);
15:

Class: ExactRange

1: Interval LinearRange(Real c0,c1,r):
2: Return exact range of c0 + c1(I −m); ▷ I = [m− r,m+ r], m is the midpoint
3: Interval QuadraticRange(Real c0,c1,c2,r):
4: Return exact range of c0 + c1(I −m) + c2(I −m)2;
5: Interval CubicRange(Real c0,c1,c2,c3,r):
6: Return exact range of c0 + c1(I −m) + c2(I −m)2 + c3(I −m)3;

Class Relation Tree

EVAL

EvalLagrange

EvalL3 EvalL3Cheap EvalL4 EvalL4Cheap

EvalTaylor

EvalT2Min EvalT2 EvalT3 EvalT4

2

Core Classes

Class: Eval

1: Polynomial f ; ▷ Input polynomial
2: Interval I0; ▷ Interval to search
3: Integer m; ▷ Number of roots, if known
4: Vector⟨Real⟩ z; ▷ Roots of f, if known
5: Queue⟨Interval⟩ Q; ▷ Queue of intervals to be checked
6: Vector⟨Interval⟩ Z; ▷ Intervals that contain a single zero
7: Integer NumInt; ▷ Total num. of intervals (tree size)
8: String name; ▷ Name of range function method
9:

10: Eval(Vector⟨Real⟩ v, Interval I):
11: f ←polynomial(v);
12: f.n← dim(v)− 1;
13: m← 0;
14: I0 ← I;
15: Eval():
16: Read cin and parse into f, f.n,m, I0;
17:

18: Virtual Interval SplitLeft(Interval I); ▷ To be implemented in EvalLagrange & EvalTaylor
19: Virtual Interval SplitRight(Interval I);
20: Virtual Interval Getf (Interval I); ▷ To be implemented in leaf classes from class relation tree
21: Virtual Interval Getf ′(Interval I);
22:

23: void EVAL(): Runs the EVAL algorithm;

Class: EvalTaylor — Subclass of: Eval

1: Integer n; ▷ Degree of input polynomial f
2: Vector⟨Real⟩ c; ▷ Coefficients of Taylor expansion of f about m
3:

4: EvalTaylor(Vector⟨Real⟩ v, Interval I): super(v, I); n← f.n; Resize c into n+ 1 dimensional vector;
5: EvalTaylor(): super(); n← f.n; Resize c into n+ 1 dimensional vector;
6:

7: void ComputeTaylorCoefficients(Real m): Computes & stores Taylor coefficients of f about m in c;
8: Interval SplitLeft(Interval I): [a,m].level← I.level + 1; Return [a,m]; ▷ m is midpoint of I = [a, b]
9: Interval SplitRight(Interval I): [m, b].level← I.level + 1; Return [m, b];

Class: EvalLagrange — Subclass of: Eval

1: Integer N ; ▷ ⌊d/3⌋, where d is deree of input polynomial f
2: Vector⟨ Vector⟨Real⟩ ⟩ data; ▷ Data values at interval endpoints and midpoint
3:

4: EvalLagrange(Vector⟨Real⟩ v, Interval I): super(v, I); N ← (f.n)/3;
5: EvalLagrange(): super(); N ← (f.n)/3;
6:

7: void ComputeDerivatives(Vector⟨Real⟩ d, Real m):
8: Compute and store d← [f(m), f (3)(m), f (6)(m), . . . , f (3N)(m)];
9: Interval SplitLeft(Interval I): [a,m].level← I.level + 1; Return [a,m]; ▷ m is midpoint of I = [a, b]

10: Interval SplitRight(Interval I): [m, b].level← I.level + 1; Return [m, b];

3

Note: Getf ′ should be called after Getf as it uses coefficients of the Hermite interpolant’s coefficients already
computed in Getf .

Class: EvalL3 — Subclass of: EvalLagrange

1: Real d0,0, d0,1, d0,2; ▷ Coefficients of h0(x)
2: Real T ; ▷ Remainder estimate T3,n

3:

4: EvalL3(Vector⟨Real⟩ v, Interval I): super(v, I); name← ‘EvalL3’;
5: EvalL3(): super(); name← ‘EvalL3’;
6:

7: Interval Getf (Interval I): Estimates range of f over I using Lagrange forms with cubic convergence;
8: Interval Getf ′(Interval I): Estimates range of f ′ over I using Lagrange forms with cubic convergence;

Class: EvalL3Cheap — Subclass of: EvalLagrange

1: Real d0,0, d0,1, d0,2; ▷ Coefficients of h0(x)
2: Real T ′; ▷ Cheap remainder estimate T ′

3,n

3:

4: EvalL3Cheap(Vector⟨Real⟩ v, Interval I): super(v, I); name← ‘EvalL3Cheap’;
5: EvalL3Cheap(): super(); name← ‘EvalL3Cheap’;
6:

7: Interval Getf (Interval I): Estimates range of f over I using Lagrange forms with cubic convergence;
8: Interval Getf ′(Interval I): Estimates range of f ′ over I using Lagrange forms with cubic convergence;

Class: EvalL4 — Subclass of: EvalLagrange

1: Real d̂0,0, d̂0,1, d̂0,2; ▷ Coefficients of ĥ0(x)
2: Real T ; ▷ Remainder estimate T4,n

3: Real f (3)(m);

4: Interval ĥ1(I);
5: Real Ω3;
6:

7: EvalL4(Vector⟨Real⟩ v, Interval I): super(v, I); name← ‘EvalL4’;
8: EvalL4(): super(); name← ‘EvalL4’;
9:

10: Interval Getf (Interval I): Estimates range of f over I using Lagrange forms with quartic convergence;
11: Interval Getf ′(Interval I): Estimates range of f ′ over I using Lagrange forms with quadratic convergence;

Class: EvalL4Cheap — Subclass of: EvalLagrange

1: Real d̂0,0, d̂0,1, d̂0,2; ▷ Coefficients of ĥ0(x)
2: Real T ′; ▷ Cheap remainder estimate T ′

4,n

3: Real f (3)(m);

4: Interval ĥ1(I);
5: Real Ω3;
6:

7: EvalL4Cheap(Vector⟨Real⟩ v, Interval I): super(v, I); name← ‘EvalL4Cheap’;
8: EvalL4Cheap(): super(); name← ‘EvalL4Cheap’;
9:

10: Interval Getf (Interval I): Estimates range of f over I using Lagrange forms with quartic convergence;
11: Interval Getf ′(Interval I): Estimates range of f ′ over I using Lagrange forms with quadratic convergence;

4

Note: Getf ′ should be called after Getf as it uses coefficients of the Taylor expansions already computed in
Getf .

Classes: EvalT2 — Subclass of: EvalTaylor

1: EvalT2(Vector⟨Real⟩ v, Interval I): super(v, I); name← ‘EvalT2’;
2: EvalT2(): super(); name← ‘EvalT2’;
3:

4: Interval Getf (Interval I): Estimates range of f over I using quadratic Taylor form;
5: Interval Getf ′(Interval I): Estimates range of f ′ over I using quadratic Taylor form;

Classes: EvalT2Min — Subclass of: EvalTaylor

1: EvalT2Min(Vector⟨Real⟩ v, Interval I): super(v, I); name← ‘EvalT2Min’;
2: EvalT2Min(): super(); name← ‘EvalT2Min’;
3:

4: Interval Getf (Interval I): Estimates range of f over I using minimal quadratic Taylor form;
5: Interval Getf ′(Interval I): Estimates range of f ′ over I using minimal quadratic Taylor form;

Classes: EvalT3 — Subclass of: EvalTaylor

1: EvalT3(Vector⟨Real⟩ v, Interval I): super(v, I); name← ‘EvalT3’;
2: EvalT3(): super(); name← ‘EvalT3’;
3:

4: Interval Getf (Interval I): Estimates range of f over I using cubic Taylor form;
5: Interval Getf ′(Interval I): Estimates range of f ′ over I using cubic Taylor form;

Classes: EvalT4 — Subclass of: EvalTaylor

1: EvalT4(Vector⟨Real⟩ v, Interval I): super(v, I); name← ‘EvalT4’;
2: EvalT4(): super(); name← ‘EvalT4’;
3:

4: Interval Getf (Interval I): Estimates range of f over I using quartic Taylor form;
5: Interval Getf ′(Interval I): Estimates range of f ′ over I using quartic Taylor form;

5

Bibliography

Alefeld, G., Herzberger, J., and Rockne, J. (2012). Introduction to Interval Computation. Elsevier
Science, St. Louis.

Cornelius, H. and Lohner, R. (1984). Computing the range of values of real functionswith accuracy
higher than second order. Computing, 33(3–4):331–347.

Du, Z., Eleftheriou, M., Moreira, J., and Yap, C. (2002). Hypergeometric functions in exact geo-
metric computation. Electronic Notes in Theoretical Computer Science, 66:53–64.

Du, Z. and Yap, C. (2006). Uniform complexity of approximating hypergeometric functions with
absolute error, pages 246–249. Proceedings of the 7th Asian Symposium on Computer Math
(ASCM 2005).

Hormann, K., Kania, L., and Yap, C. (2021). Novel range functions via taylor expansions and re-
cursive lagrange interpolation with application to real root isolation. In Proceedings of the 2021
on International Symposium on Symbolic and Algebraic Computation, ISSAC ’21, page 193–200,
New York, NY, USA. Association for Computing Machinery.

Li, C. and Yap, C. (2001). A new constructive root bound for algebraic expressions. In Proceedings
of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, page 496–505,
USA. Society for Industrial and Applied Mathematics.

Moore, R. E. (1979). Methods and Applications of Interval Analysis. Society for Industrial and
Applied Mathematics.

Moore, R. E., Kearfott, R. B., and Cloud, M. J. (2009). Introduction to Interval Analysis. Society for
Industrial and Applied Mathematics.

Neumaier, A. (1990). Interval methods for systems of equations. Encyclopedia of mathematics and
its applications. Cambridge University Press.

Neumaier, A. (2003). Taylor forms–use and limits. Reliab. Comput., 9(1):43–79.

Rudin, W. (1976). Principles of Mathematical Analysis. International series in pure and applied
mathematics. McGraw-Hill.

47

Shadrin, A. (1995). Error bounds for lagrange interpolation. Journal of Approximation Theory,
80(1):25–49.

Waldron, S. (1997). Lp-error bounds for hermite interpolation and the associated wirtinger in-
equalities. Constructive Approximation, 13:461–479.

48

	Dedication
	Acknowledgments
	Preface
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivating Interval Arithmetic
	Preliminaries
	Interval Arithmetic
	Range Functions
	Box Forms

	Review of Literature
	Cornelius & Lohner Form
	Higher Dimensional Extensions

	K. Hormann, L. Kania, and C. Yap 2021
	Classical Taylor Forms
	Taylor Forms with Higher Orders of Convergence
	Recursive Interpolation Forms
	Recursive Lagrange Forms with Cubic Convergence
	A Cheaper Variant of the Recursive Lagrange Form
	Recursive Lagrange Forms with Quartic Convergence

	Results
	Overview
	Generalizing the Cornelius & Lohner Framework
	Precision-Bounded Box Forms
	Lipschitz Expressions

	Quartic Range Functions using Hermite Interpolation
	Complexity Analysis of Practical Range Functions
	Amortized Complexity of the Cheap Cubic Lagrange Form
	Amortized Complexity of the Quartic Hermite Form
	Amortized Complexity for General Hermite Forms

	Experiments
	Real-Root Isolation and the Eval Algorithm
	Estimating the Range of the Derivative
	Generalized Taylor Forms
	Cubic Lagrange Forms
	Quartic Hermite Forms

	Methodology and Settings
	Results
	Non-Maximal Recursion Levels
	Running Times

	Conclusion
	Future Work

	Appendix
	Bibliography

